With their rich electronic, vibrational, rotational and hyperfine structure, molecular systems have the potential to play a decisive role in precision tests of fundamental physics. For example, electroweak nuclear interactions should cause small energy differences between the two enantiomers of chiral molecules, a signature of parity symmetry breaking. Enantioenriched oxorhenium(VII) complexes S-(-)- and R-(+)-3 bearing a chiral 2-methyl-1-thio-propanol ligand have been prepared as potential candidates for probing molecular parity violation effects via high resolution laser spectroscopy of the Re=O stretching. Although the rhenium atom is not a stereogenic centre in itself, experimental vibrational circular dichroism (VCD) spectra revealed a surrounding chiral environment, evidenced by the Re=O bond stretching mode signal. The calculated VCD spectrum of the R enantiomer confirmed the position of the sulfur atom cis to the methyl, as observed in the solid-state X-ray crystallographic structure, and showed the presence of two conformers of comparable stability. Relativistic quantum chemistry calculations indicate that the vibrational shift between enantiomers due to parity violation is above the target sensitivity of an ultra-high resolution infrared spectroscopy experiment under active preparation.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c3cp50199jDOI Listing

Publication Analysis

Top Keywords

parity violation
12
violation effects
8
chiral
4
chiral rhenium
4
rhenium complex
4
complex predicted
4
predicted high
4
parity
4
high parity
4
effects synthesis
4

Similar Publications

Measurement of CP Violation Observables in D^{+}→K^{-}K^{+}π^{+} Decays.

Phys Rev Lett

December 2024

Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.

Article Synopsis
  • The study investigates CP symmetry violation in the decay of D^{+} particles into K^{-}K^{+}π^{+} using data from proton-proton collisions at a high energy of 13 TeV.
  • A unique model-independent method was employed to analyze the phase-space distributions of D^{+} and D^{-} particles, correcting for any instrumental biases using D_{s}^{+} decays.
  • The findings indicate no significant evidence of CP violation, with a p value of 8.1%, and measure specific CP asymmetry observables, marking this study as the most sensitive search of its kind in multibody decays.
View Article and Find Full Text PDF

In this work, we theoretically explore whether a parity-violating/chiral light-matter interaction is required to capture all relevant aspects of chiral polaritonics or if a parity-conserving/achiral theory is sufficient (e.g., long-wavelength/dipole approximation).

View Article and Find Full Text PDF
Article Synopsis
  • The CMS experiment conducted a search for charge-parity violation in decays using proton-proton collision data from 2018, analyzing around 10 billion events with b hadrons decaying into charm hadrons.
  • The flavor of the neutral D meson was determined through the charge of pions in the reconstructed decays, and an asymmetry measurement in the decays was reported, taking into account various uncertainties.
  • This research marks the first asymmetry measurement by the CMS in the charm sector and the first to use a fully hadronic final state in such analyses.
View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on detecting multijet signatures from proton-proton collisions at a high energy of 13 TeV, analyzing a dataset totaling 128 fb^{-1}.
  • A special data scouting method is utilized to pick out events with low combined momentum in jets.
  • This research is pioneering in its investigation of electroweak particle production in R-parity violating supersymmetric models, particularly examining hadronically decaying mass-degenerate higgsinos, and it broadens the limits on the existence of R-parity violating top squarks and gluinos.
View Article and Find Full Text PDF

Search for CP-Violating Neutrino Nonstandard Interactions with the NOvA Experiment.

Phys Rev Lett

November 2024

Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA.

This Letter reports a search for charge-parity (CP) symmetry violating nonstandard interactions (NSI) of neutrinos with matter using the NOvA Experiment, and examines their effects on the determination of the standard oscillation parameters. Data from ν_{μ}(ν[over ¯]_{μ})→ν_{μ}(ν[over ¯]_{μ}) and ν_{μ}(ν[over ¯]_{μ})→ν_{e}(ν[over ¯]_{e}) oscillation channels are used to measure the effect of the NSI parameters ϵ_{eμ} and ϵ_{eτ}. With 90% CL the magnitudes of the NSI couplings are constrained to be |ϵ_{eμ}|≲0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!