Segmentation of retinal OCT images using a random forest classifier.

Proc SPIE Int Soc Opt Eng

Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD 21218.

Published: March 2013

Optical coherence tomography (OCT) has become one of the most common tools for diagnosis of retinal abnormalities. Both retinal morphology and layer thickness can provide important information to aid in the differential diagnosis of these abnormalities. Automatic segmentation methods are essential to providing these thickness measurements since the manual delineation of each layer is cumbersome given the sheer amount of data within each OCT scan. In this work, we propose a new method for retinal layer segmentation using a random forest classifier. A total of seven features are extracted from the OCT data and used to simultaneously classify nine layer boundaries. Taking advantage of the probabilistic nature of random forests, probability maps for each boundary are extracted and used to help refine the classification. We are able to accurately segment eight retinal layers with an average Dice coefficient of 0.79 ± 0.13 and a mean absolute error of 1.21 ± 1.45 pixels for the layer boundaries.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3660978PMC
http://dx.doi.org/10.1117/12.2006649DOI Listing

Publication Analysis

Top Keywords

random forest
8
forest classifier
8
layer boundaries
8
layer
5
segmentation retinal
4
oct
4
retinal oct
4
oct images
4
images random
4
classifier optical
4

Similar Publications

Atemoya fruit deteriorates rapidly during post-harvest storage. A complete understanding of the metabolic mechanisms underlying this process is crucial for developing effective preservation strategies. Metabolomic approaches combined with machine learning offer new opportunities to identify quality-related biomarkers.

View Article and Find Full Text PDF

Assessing myocardial viability is crucial for managing ischemic heart disease. While late gadolinium enhancement (LGE) cardiovascular magnetic resonance (CMR) is the gold standard for viability evaluation, it has limitations, including contraindications in patients with renal dysfunction and lengthy scan times. This study investigates the potential of non-contrast CMR techniques-feature tracking strain analysis and T1/T2 mapping-combined with machine learning (ML) models, as an alternative to LGE-CMR for myocardial viability assessment.

View Article and Find Full Text PDF

Active transportation, such as cycling, improves mobility and general health. However, statistics reveal that in low- and middle-income countries, male and female cycling participation rates differ significantly. Existing literature highlights that women's willingness to use bicycles is significantly influenced by their perception of security.

View Article and Find Full Text PDF

Electric vehicles (EVs) rely heavily on lithium-ion battery packs as essential energy storage components. However, inconsistencies in cell characteristics and operating conditions can lead to imbalanced state of charge (SOC) levels, resulting in reduced capacity and accelerated degradation. This study presents an active cell balancing method optimized for both charging and discharging scenarios, aiming to equalize SOC across cells and improve overall pack performance.

View Article and Find Full Text PDF

Rapid and accurate multi-phenotype imputation for millions of individuals.

Nat Commun

January 2025

Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs & Fisheries college, Jimei University, Xiamen, Fujian, People's Republic of China.

Deep phenotyping can enhance the power of genetic analysis, including genome-wide association studies (GWAS), but the occurrence of missing phenotypes compromises the potential of such resources. Although many phenotypic imputation methods have been developed, the accurate imputation of millions of individuals remains challenging. In the present study, we have developed a multi-phenotype imputation method based on mixed fast random forest (PIXANT) by leveraging efficient machine learning (ML)-based algorithms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!