We investigated the effect of 1.4% isoflurane (ISO) on the development of inflammation and apoptosis caused by zymosan (ZY) in mice. We found that ZY-challenged mice exhibited significant body weight loss, markedly high mortality, and significant lung injury characterized by the deterioration of histopathology, histologic scores, and wet-to-dry ratio after ISO treatment. ISO dramatically attenuated ZY-induced lung neutrophil recruitment and inflammation, as evidenced by the reduced levels of total cells, neutrophils, and proinflammatory cytokines (i.e., tumor necrosis factor- α , interleukin- (IL-) 1 β , IL-6, and macrophage inflammatory protein-2) in bronchoalveolar lavage fluid and of their mRNA expression in lung tissues. ISO also inhibited ZY-induced expression and activation of nuclear factor-kappaB p65 and inducible nitric oxide synthase in pulmonary tissue. ZY administration also resulted in the upregulation of heme oxygenase-1 expression and activity in the lung, which was further enhanced by ISO treatment. Moreover, ISO markedly prevented ZY-induced pulmonary cell apoptosis in mice, as reflected by the decrease in expression of procaspase-8, procaspase-3, cleaved caspase-8, and cleaved caspase-3, as well as in caspase-3 activity and Bcl-2-associated X/B-cell lymphoma 2 ratio. These results indicate that ISO is a potential therapeutic drug for treating ZY-induced lung injury, and further investigations are warranted.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3652145PMC
http://dx.doi.org/10.1155/2013/108928DOI Listing

Publication Analysis

Top Keywords

lung injury
12
inflammation apoptosis
8
iso treatment
8
treatment iso
8
zy-induced lung
8
iso
7
lung
6
anesthetic isoflurane
4
isoflurane posttreatment
4
posttreatment attenuates
4

Similar Publications

Introduction And Objectives: High flow nasal cannula (HFNC) therapy is an increasingly popular mode of non-invasive respiratory support for the treatment of patients with acute hypoxemic respiratory failure (AHRF). Previous experimental studies in healthy subjects have established that HFNC generates flow-dependent positive airway pressures, but no data is available on the levels of mean airway pressure (mP) or positive end-expiratory pressure (PEEP) generated by HFNC therapy in AHRF patients. We aimed to estimate the airway pressures generated by HFNC at different flow rates in patients with AHRF, whose functional lung volume may be significantly reduced compared to healthy subjects due to alveolar consolidation and/or collapse.

View Article and Find Full Text PDF

Background And Aim: Zinc oxide and copper oxide nanoparticles are known for their promising biological activities. This study aims to synthesize zinc oxide nanoparticles and copper-doped zinc oxide nanoparticles to harness the combined cytotoxic and anticancer effects of them in vitro and in vivo studies.

Methods: Zinc oxide nanoparticles, both doped and undoped, were synthesized using a chemical co-precipitation method.

View Article and Find Full Text PDF

Pulmonary fibrosis is a pathological manifestation that occurs upon lung injury and subsequence aberrant repair with poor prognosis. However, current treatment is limited and does not distinguish different disease stages. Here, we aimed to study the differential functions of Axl, a receptor tyrosine kinase expressing on both macrophages and fibroblasts, in the whole course of pulmonary fibrosis.

View Article and Find Full Text PDF

Acute lung injury (ALI) is a complex acute respiratory illness with a high mortality rate. Reactive oxygen species (ROS) play a pivotal role in ALI, inducing cellular damage, inflammation, and oxidative stress, thereby exacerbating the severity of the injury. In this study, inspired by the "subtractive" strategy, we developed a fucoidan-based macrophage membrane bio-nanosystem, abbreviated as MF@CB, designed as an anti-inflammatory and antioxidant agent to alleviate lipopolysaccharide (LPS)-induced inflammation in ALI.

View Article and Find Full Text PDF

Polysialic acid-based nanoparticles for enhanced targeting and controlled dexamethasone release in pulmonary inflammation treatment.

Int J Biol Macromol

January 2025

School of Pharmaceutical Science, Liaoning University, Shenyang 110036, China; Liaoning Key Laboratory for New Drug Development, Shenyang 110036, China. Electronic address:

Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are life-threatening conditions characterized by severe inflammation and respiratory failure. Despite the use of dexamethasone (Dex) in treatment, challenges such as poor solubility and systemic side effects persist, highlighting the need for novel therapeutic approaches. This study introduces an innovative nanoparticle delivery system based on chitosan (CS) and polysialic acid (PSA), engineered via electrostatic assembly, to improve the targeted delivery of Dex to inflamed lung tissues.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!