Parametric study on the enrichment of immunoglobulin from milk by foam fractionation.

Appl Biochem Biotechnol

Department of Chemical-Technical Analysis and Chemical Food Technology, Technical University of Munich, Munich, Germany.

Published: August 2013

Foam fractionation is a promising method for separation and concentration of biochemicals. It is simple, easily scalable, inexpensive, and environment friendly. Foam fractionation thus represents an alternative to the traditional methods used for immunoglobulin enrichment. However, little, if any, literature exists documenting the utilization of foam fractionation in the enrichment of immunoglobulins. Milk were utilized as an immunoglobulin source to serve as examples of a real system in this study. The investigation examined the effects of varying five different process parameters: the initial pH value, the initial concentration of immunoglobulin, the nitrogen flow rate, the column height, and the foaming time. Experimental results demonstrated that immunoglobulin could effectively be enriched from milk by foam fractionation. The maximum enrichment ratio with pretreatment (using pH 4.6 precipitation) was 6.30 along with a more than 92 % recovery for IgG and an enrichment ratio of 5.1 with 85 % recovery for IgM.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12010-013-0272-5DOI Listing

Publication Analysis

Top Keywords

foam fractionation
20
milk foam
8
enrichment ratio
8
enrichment
5
immunoglobulin
5
foam
5
fractionation
5
parametric study
4
study enrichment
4
enrichment immunoglobulin
4

Similar Publications

This study investigates the development of a novel CO-foamed viscoelastic gel-based fracturing fluid to address the challenges of high-temperature formations. The influence of various parameters, including surfactant type and concentration, gas fraction, shear rate, water salinity, temperature, and pressure, on foam viscosity was systematically explored. Rheological experiments were conducted using a high-pressure/high-temperature (HPHT) rheometer at 150 °C and pressures ranging from 6.

View Article and Find Full Text PDF

Physicochemical and techno-functional characterization of soluble proteins extracted by ultrasound from the cricket .

Heliyon

December 2024

Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril San Rafael Atlixco 186, Col. Leyes de Reforma, 1a. Sección, C.P. 09310, Ciudad de México, Mexico.

The growing interest in using insects for human consumption is due to their numerous benefits. Insects offer efficient protein generation, rapid growth rates, and high nutritional value. The objective of this work was to evaluate the physicochemical and techno-functional properties of the different soluble protein fractions of the cricket using various methods: grinding (CF), defatting (DCF), alkalinization (SPA), and ultrasound-assisted extraction (SPS).

View Article and Find Full Text PDF

The foaming and polarization of macrophages are pivotal in the formation and development of atherosclerosis. This study delved into the structure and membrane pattern recognition receptors (PRRs) of the neutral polysaccharide fraction (PPRLMF-1), investigating effects of PPRLMF-1 and acid polysaccharide fraction (PPRLMF-2) on the foaming and polarization of RAW264.7 macrophage cells, and exploring their underlying mechanisms.

View Article and Find Full Text PDF

Per- and polyfluoroalkyl substances (PFAS) are widely used persistent synthetic chemicals that have been linked to adverse health effects. While the behavior of PFAS has been evaluated in the environment, our understanding of reaction products in mammalian systems is limited. This study identified biological PFAS transformation products and generated mass spectral libraries to facilitate an automated search and identification.

View Article and Find Full Text PDF

Effects of Partially Filled EPS Foam on Compressive Behavior of Aluminum Hexagonal Honeycombs.

Materials (Basel)

December 2024

The Sirindhorn International Thai-German Graduate School of Engineering (TGGS), King Mongkut's University of Technology North Bangkok (KMUTNB), Pracharat 1 Road, Bangkok 10800, Thailand.

This study investigates the compressive behavior of aluminum honeycombs partially filled with expanded polystyrene (EPS) foam, emphasizing the effects of filler area fractions and vertex contact locations on energy absorption and crush characteristics. Axial quasi-static compression tests evaluated energy absorption, mean crush force, specific energy absorption, and crush force efficiency. Results revealed that partially filled honeycombs significantly enhance energy absorption and mean crush force compared to their unfilled counterparts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!