Tibial compression can increase murine bone mass. However, loading protocols and mouse strains differ between studies, which may contribute to conflicting results. We hypothesized that bone accrual is influenced more by loading history than by mouse strain or animal handling. The right tibiae of 4-month-old C57BL/6 and BALB/c mice were subjected to axial compression (10 N, 3 days/week, 6 weeks). Left tibiae served as contralateral controls to calculate relative changes: (loaded - control)/control. The WashU protocol applied 60 cycles/day, at 2 Hz, with a 10-s rest-insertion between cycles; the Cornell/HSS protocol applied 1,200 cycles/day, at 6.7 Hz, with a 0.1-s rest-insertion. Because sham loading, sedation, and transportation did not affect tibial morphology, unhandled mice served as age-matched controls (AC). Both loading protocols were anabolic for cortical bone, but Cornell/HSS loading elicited a more rapid response that was greater than WashU loading by 13 %. By 6 weeks, cortical bone volume of each loading group was greater than of AC (average + 16 %) and not different from each other. Ultimate displacement and energy to fracture were greater in tibiae loaded by either protocol, and ultimate force was greater with Cornell/HSS loading. At 6 weeks, independent of mouse strain, the WashU protocol produced minimal trabecular bone and the trabecular bone volume fraction of Cornell/HSS tibiae was greater than that of AC by 65 % and that of WashU by 44 %. We concluded that tibial adaptation to loading was more influenced by waveform than mouse strain or animal handling and therefore may have targeted similar osteogenic mechanisms in C57BL/6 and BALB/c mice.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3748612PMC
http://dx.doi.org/10.1007/s00223-013-9744-4DOI Listing

Publication Analysis

Top Keywords

c57bl/6 balb/c
12
balb/c mice
12
mouse strain
12
loading
10
axial compression
8
loading history
8
loading protocols
8
strain animal
8
animal handling
8
washu protocol
8

Similar Publications

Transcranial Cortex-Wide Imaging of Murine Ischemic Perfusion With Large-Field Multifocal Illumination Microscopy.

Stroke

January 2025

Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland (Z.C., Q.Z., Y.-H.L., C.G., I.G., M.W., H.A.I.Y., D.R.K., B.W., D.R.).

Background: Ischemic stroke is a common cause of death worldwide and a main cause of morbidity. Presently, laser speckle contrast imaging, x-ray computed tomography, and magnetic resonance imaging are the mainstay for stroke diagnosis and therapeutic monitoring in preclinical studies. These modalities are often limited in terms of their ability to map brain perfusion with sufficient spatial and temporal resolution, thus calling for development of new brain perfusion techniques featuring rapid imaging speed, cost-effectiveness, and ease of use.

View Article and Find Full Text PDF

Molecular Imaging of Tumor-Infiltrating Lymphocytes in Living Animals Using a Novel mCD3 Fibronectin Scaffold.

Bioconjug Chem

December 2024

Canary Center for Cancer Early Detection, Department of Radiology, Stanford University, Palo Alto, California 94304, United States.

The interaction between cancer cells and immune cells in the tumor microenvironment (TME) plays a crucial role in determining tumor growth, metastasis, and response to treatment. Tumor-infiltrating lymphocytes (TILs) in TME could be a predictive marker for treatment response in various therapeutic interventions, including chemotherapy and immunotherapy. Thus, imaging the tumor immune microenvironment is important for selecting the optimal treatment strategies in cancer therapy.

View Article and Find Full Text PDF

Th1 adjuvant ARNAX, in combination with radiation therapy, enhances tumor regression in mouse tumor-implant models.

Immunol Lett

February 2025

Department of Vaccine Immunology, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan; Division of Vaccine Immunology, Hokkaido University International Institute for Zoonosis Control, Sapporo 001-0020, Japan; Nebuta Research Institute for Life Sciences, Aomori University, Aomori 030-0943, Japan. Electronic address:

Radiation therapy (RT) rarely induces tumor regression at untreated metastatic sites, the so-called abscopal effect. A syngeneic tumor (EG7) transplanted into a Th1-dominant mouse strain (C57BL/6) regressed significantly on the treated side and less on the contralateral side after RT. Additional subcutaneous administration of ARNAX, a non-inflammatory adjuvant, further accelerated tumor regression on the untreated side.

View Article and Find Full Text PDF

Dietary arachidonic acid contributes to alleviation of peanut-induced allergy biomarkers in BALB/c, C57BL/6 and CD-1 mice.

Int Immunopharmacol

January 2025

Department of Chemistry, School of Sciences and Engineering, The American University in Cairo, New Cairo, Cairo, Egypt. Electronic address:

Objective: Despite its innumerable, invaluable and unique benefits to human development and welfare, consumption of the omega 6 polyunsaturated fatty acid, arachidonic acid (ARA) generates apprehension due to the association of its metabolites with allergy symptoms. Accordingly, it was deemed important to examine the impact of ARA supplementation on initiation and progress of peanut (PN)-induced allergy in mice of different MHC haplotypes.

Methods: Cohorts of BALB/c, C57BL/6, and outbred CD-1 mice were maintained two weeks before experimentation and until the end of the experiment on mouse food supplemented with equal amounts of milk powder containing 3 or 0 mg ARA/day/mouse, and then exposed to inhalation of 0 or 100 μg/mouse PN flour molecules twice for 4 weeks.

View Article and Find Full Text PDF

Origin, pathogenicity, and transmissibility of a human isolated influenza A(H10N3) virus from China.

Emerg Microbes Infect

December 2025

National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), NHC Key Laboratory of Medical Virology and Viral Diseases, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, Beijing, People's Republic of China.

Subtype H10 viruses are known to infect humans in Africa, Oceania, and Asia. In 2021, 2022, and recently in April 2024, a novel H10N3 subtype avian influenza virus was found cause human infection with severe pneumonia. Herein, we comprehensively studied the phylogenetic evolution and biological characteristics of the newly emerged influenza A(H10N3) virus.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!