A series of final six propanoyloxy derivatives of 5β-cholan-24-oic acid (tridecafluoroctylsulfanyl- and tridecafluoroctylsulfinylethoxycarbonylpropanoyloxy derivatives) as potential drug absorption promoters (skin penetration enhancers, intestinal absorption promoters) was generated by multistep synthesis. Structure confirmation of all generated compounds was accomplished by (1)H NMR, (13)C NMR, IR and MS spectroscopy methods. All the prepared compounds were analyzed using RP-TLC, and their lipophilicity (RM) was determined. The hydrophobicity (log P), solubility (logS), polar surface area (PSA) and molar volume (MV) of the studied compounds were also calculated. All the target compounds were tested for their in vitro transdermal penetration effect and as potential intestinal absorption enhancers. The cytotoxicity of all the evaluated compounds was evaluated against normal human skin fibroblast cells. Their anti-proliferative activity was also assessed against human cancer cell lines: T-lymphoblastic leukaemia cell line and breast adenocarcinoma cell line. One compound showed high selective cytotoxicity against human skin fibroblast cells and another compound possessed high cytotoxicity against breast adenocarcinoma cell line and skin fibroblast cells. Only one compound expressed anti-proliferative effect on leukaemia and breast adenocarcinoma cells without affecting the growth of normal cells, which should be promising in potential development of new drugs. Most of the target compounds showed minimal anti-proliferative activity (IC50>37μM), indicating they would have moderate cytotoxicity when administered as chemical absorption modifiers. The relationships between the lipophilicity/polarity and the chemical structure of the studied compounds as well as the relationships between their chemical structure and penetration enhancement effect are discussed in this article.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.steroids.2013.05.012DOI Listing

Publication Analysis

Top Keywords

skin fibroblast
12
fibroblast cells
12
breast adenocarcinoma
12
derivatives 5β-cholan-24-oic
8
5β-cholan-24-oic acid
8
drug absorption
8
absorption modifiers
8
absorption promoters
8
intestinal absorption
8
studied compounds
8

Similar Publications

Protective Effects of Hydrogen Treatment Against High Glucose-Induced Oxidative Stress and Apoptosis via Inhibition of the AGEs/RAGE/NF-κB Signaling Pathway in Skin Cells.

Endocr Metab Immune Disord Drug Targets

January 2025

Department of Burn and Plastic Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.

Background: Diabetic wounds are major clinical challenges, often complicated by oxidative stress and free radical generation. Hydrogen (H2), a selective antioxidant, offers potential as a therapeutic agent for chronic diabetic wounds. However, its precise mechanisms remain underexplored.

View Article and Find Full Text PDF

Chronic hard-to-heal wounds pose a significant threat to patients' health and quality of life, and their clinical management remains a challenge. Adipose-derived stem cell exosomes (ADSC-exos) have shown promising results in promoting diabetic wound healing. However, effectively enhancing the retention of exosomes in wounds for treatment remains a key issue that needs to be addressed.

View Article and Find Full Text PDF

Failure to repair damaged NAD(P)H blocks de novo serine synthesis in human cells.

Cell Mol Biol Lett

January 2025

Enzymology and Metabolism Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4367, Belvaux, Luxembourg.

Background: Metabolism is error prone. For instance, the reduced forms of the central metabolic cofactors nicotinamide adenine dinucleotide (NADH) and nicotinamide adenine dinucleotide phosphate (NADPH), can be converted into redox-inactive products, NADHX and NADPHX, through enzymatically catalyzed or spontaneous hydration. The metabolite repair enzymes NAXD and NAXE convert these damaged compounds back to the functional NAD(P)H cofactors.

View Article and Find Full Text PDF

Yttrium oxide nanoparticles (YONPs) have emerged as a promising avenue for cancer therapy, primarily due to their distinctive properties that facilitate selective targeting of cancer cells. Despite their potential, the therapeutic effects of YONPs on human epidermoid skin cancer remain largely unexplored. This study was thus conducted to investigate the impact of YONPs on both human skin normal and cancer cells, with an emphasis on assessing their cytotoxicity, genotoxicity, and the mechanisms underlying these effects.

View Article and Find Full Text PDF

Aureobasidium melanogenum is a black yeast-like fungus that occurs frequently both in nature and in domestic environments. It is becoming increasingly important as an opportunistic pathogen. Nevertheless, its effect on human cells has not yet been studied.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!