Virus-like particle vaccine protects against H3N2 canine influenza virus in dog.

Vaccine

Avian Disease Laboratory, College of Veterinary Medicine, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea.

Published: July 2013

In the present study, virus-like particles (VLPs) were evaluated as a candidate veterinary vaccine against canine influenza virus (CIV) subtype H3N2. Specific pathogen-free (SPF) beagle dogs received a single injection of a VLP vaccine containing hemagglutinin (HA) and M1 protein of CIV H3N2 (H3 HA VLP). The vaccine was tested at 3 different doses with an adjuvant and 1 dose without an adjuvant. To evaluate the immunogenicity and protective efficacy of the H3 HA VLP vaccine, we performed hemagglutination inhibition tests to determine serological immune responses and conducted challenge studies using SPF beagle dogs. The addition of Montanide ISA 25 adjuvant significantly increased the immunogenicity of the H3 HA VLP vaccine. The experimental infection study showed that a single dose of H3 HA VLP vaccine induced protection against wild-type virus challenge in dogs. These results provide support for continued development of the VLP as an animal vaccine against influenza virus.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4009491PMC
http://dx.doi.org/10.1016/j.vaccine.2013.05.023DOI Listing

Publication Analysis

Top Keywords

vlp vaccine
20
influenza virus
12
vaccine
8
canine influenza
8
spf beagle
8
beagle dogs
8
vlp
6
virus-like particle
4
particle vaccine
4
vaccine protects
4

Similar Publications

Design and evaluation of a multi-epitope HIV-1 vaccine based on human parvovirus virus-like particles.

Vaccine

December 2024

Mucosal Immunoogy Laboratory, Biomedicine Research Unit, Faculty of Higher Studies Iztacala, National Autonomous University of Mexico. Avenida de los Barrios 1, Los Reyes Iztacala, Tlalnepantla, Estado de México 54090, Mexico. Electronic address:

The development of a protective HIV vaccine remains a challenge given the high antigenic diversity and mutational rate of the virus, which leads to viral escape and establishment of reservoirs in the host. Modern antigen design can guide immune responses towards conserved sites, consensus sequences or normally subdominant epitopes, thus enabling the development of broadly neutralizing antibodies and polyfunctional lymphocyte responses. Conventional epitope vaccines can often be impaired by low immunogenicity, a limitation that may be overcome by using a carrier system.

View Article and Find Full Text PDF

Multifaceted virus-like particles: Navigating towards broadly effective influenza A virus vaccines.

Curr Res Microb Sci

November 2024

Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.

The threat of influenza A virus (IAV) remains an annual health concern, as almost 500,000 people die each year due to the seasonal flu. Current flu vaccines are highly dependent on embryonated chicken eggs for production, which is time consuming and costly. These vaccines only confer moderate protections in elderly people, and they lack cross-protectivity; thereby requiring annual reformulation to ensure effectiveness against contemporary circulating strains.

View Article and Find Full Text PDF

Previously obtained highly immunogenic Env-VLPs ensure overcoming the natural resistance of HIV-1 surface proteins associated with their low level of incorporation and inaccessibility of conserved epitopes to induce neutralizing antibodies. We also adopted this technology to modify Env trimers of the ZM53(T/F) strain to produce Env-VLPs by recombinant vaccinia viruses (rVVs). For VLP production, rVVs expressing Env, Gag-Pol (HIV-1/SIV), and the cowpox virus hr gene, which overcomes the restriction of vaccinia virus replication in CHO cells, were used.

View Article and Find Full Text PDF

[Recombinant VLP Vaccines Synthesized in Plant Expression Systems: Current Updates and Prospects].

Mol Biol (Mosk)

December 2024

Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090 Russia.

The development and creation of a new generation vaccines based on recombinant proteins that assemble into virus-like particles (VLPs), as well as recombinant proteins in the form of nanoparticles, are promising directions in modern biotechnology. Due to their large size (20-200 nm) and multiplicity of viral antigenic determinants on the surface, VLPs can stimulate strong humoral and cellular immune responses. The main types of VLPs, as well as the features and disadvantages of the main expression systems used for their biosynthesis, are considered in this review.

View Article and Find Full Text PDF

Hepatitis B core virus-like particles bearing Pgp3 antigen enhance immune response against genital chlamydial infection in mice.

Int Immunopharmacol

December 2024

Institute of Pathogenic Biology, School of Nursing, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province, University of South China, Hengyang 421001, Hunan, People's Republic of China. Electronic address:

Chlamydia trachomatis Pgp3 protein-induced immunoprotection is effective but incomplete, which requires the suitable adjuvants to enhance its immune response. Within this context, Hepatitis B core virus-like particles (HBc-VLP) emerge as nanoscale protein particles capable of incorporating either endogenous or exogenous antigens or epitopes. In this study, HBc-Pgp3 chimeric protein was accomplished by integrating the identified dominant epitope of the Pgp3 protein into the major immunodominant region of a truncated HBc-VLP, which was realized in the pET28a (+) vector and expressed via the E.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!