Background: Mutant mouse models suggest that the chloride channel ClC-2 has functions in ion and water homoeostasis, but this has not been confirmed in human beings. We aimed to define novel disorders characterised by distinct patterns of MRI abnormalities in patients with leukoencephalopathies of unknown origin, and to identify the genes mutated in these disorders. We were specifically interested in leukoencephalopathies characterised by white matter oedema, suggesting a defect in ion and water homoeostasis.

Methods: In this observational analytical study, we recruited patients with leukoencephalopathies characterised by MRI signal abnormalities in the posterior limbs of the internal capsules, midbrain cerebral peduncles, and middle cerebellar peduncles from our databases of patients with leukoencephalopathies of unknown origin. We used exome sequencing to identify the gene involved. We screened the candidate gene in additional patients by Sanger sequencing and mRNA analysis, and investigated the functional effects of the mutations. We assessed the localisation of ClC-2 with immunohistochemistry and electron microscopy in post-mortem human brains of individuals without neurological disorders.

Findings: Seven patients met our inclusion criteria, three with adult-onset disease and four with childhood-onset disease. We identified homozygous or compound-heterozygous mutations in CLCN2 in three adult and three paediatric patients. We found evidence that the CLCN2 mutations result in loss of function of ClC-2. The remaining paediatric patient had an X-linked family history and a mutation in GJB1, encoding connexin 32. Clinical features were variable and included cerebellar ataxia, spasticity, chorioretinopathy with visual field defects, optic neuropathy, cognitive defects, and headaches. MRI showed restricted diffusion suggesting myelin vacuolation that was confined to the specified white matter structures in adult patients, and more diffusely involved the brain white matter in paediatric patients. We detected ClC-2 in all components of the panglial syncytium, enriched in astrocytic endfeet at the perivascular basal lamina, in the glia limitans, and in ependymal cells.

Interpretation: Our observations substantiate the concept that ClC-2 is involved in brain ion and water homoeostasis. Autosomal-recessive CLCN2 mutations cause a leukoencephalopathy that belongs to an emerging group of disorders affecting brain ion and water homoeostasis and characterised by intramyelinic oedema.

Funding: European Leukodystrophies Association, INSERM and Assistance Publique-Hôpitaux de Paris, Dutch Organisation for Scientific Research (ZonMw), E-Rare, Hersenstichting, Optimix Foundation for Scientific Research, Myelin Disorders Bioregistry Project, National Institute of Neurological Disorders and Stroke, and Genetic and Epigenetic Networks in Cognitive Dysfunction (GENCODYS) Project (funded by the European Union Framework Programme 7).

Download full-text PDF

Source
http://dx.doi.org/10.1016/S1474-4422(13)70053-XDOI Listing

Publication Analysis

Top Keywords

white matter
16
ion water
16
water homoeostasis
12
patients leukoencephalopathies
12
brain white
8
matter oedema
8
chloride channel
8
observational analytical
8
analytical study
8
patients
8

Similar Publications

Background: White matter (WM) is a principal component of the human brain, forming the structural basis for neural transmission between cortico-cortical and subcortical structures. The impairment of WM integrity is closely associated with the aging process, manifesting as the reorganization of brain networks based on graph theoretical analysis of complex networks and increased volume of white matter hyperintensities (WMHs) in imaging studies.

Methods: This study investigated changes in the robustness of WM brain networks during aging and assessed their correlation with WMHs.

View Article and Find Full Text PDF

Background/objectives: While studies in rat pups suggest that early zinc exposure is critical for optimal brain structure and function, associations of prenatal zinc intake with measures of brain development in infants are unknown. This study aimed to assess the associations of maternal zinc intake during pregnancy with MRI measures of brain tissue microstructure and neurodevelopmental outcomes, as well as to determine whether MRI measures of the brain mediated the relationship between maternal zinc intake and neurodevelopmental indices.

Methods: Forty-one adolescent mothers were recruited for a longitudinal study during pregnancy.

View Article and Find Full Text PDF

Clinical Insights and Radiological Features on Multiple Sclerosis Comorbid with Migraine.

J Clin Med

January 2025

Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Miraglia 2, 80138 Naples, Italy.

Multiple sclerosis (MS) and migraine are neurological diseases, affecting young women. Migraine is the most prevalent type of headache in people with MS (pwMS). The aim of this review is to describe the clinical, radiological, and therapeutic features of MS and migraine comorbidity.

View Article and Find Full Text PDF

Diffusion weighted imaging (DWI) is used for monitoring purposes for lower-grade glioma (LGG). While the apparent diffusion coefficient (ADC) is clinically used, various DWI models have been developed to better understand the micro-environment. However, the validity of these models and how they relate to each other is currently unknown.

View Article and Find Full Text PDF

Acute ischemic stroke (AIS) is frequently associated with long-term post-stroke cognitive impairment (PSCI) and dementia. While the mechanisms behind PSCI are not fully understood, the brain and cognitive reserve concepts are topics of ongoing research exploring the ability of individuals to maintain intact cognitive performance despite ischemic injuries. Brain reserve refers to the brain's structural capacity to compensate for damage, with markers like hippocampal atrophy and white matter lesions indicating reduced reserve.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!