Background: Titanium pedicle screw-rod instrumentation is considered a standard treatment for spinal instability; however, the advantages of cobalt-chromium over titanium is generating interest in orthopedic practice. The aim of this study was to compare titanium versus cobalt-chromium rods in posterior fusion through in vitro biomechanical testing.

Methods: Posterior and middle column injuries were simulated at L3-L5 in six cadaveric L1-S1 human spines and different pedicle screw constructs were implanted. Specimens were subjected to flexibility tests and range of motion, intradiscal pressure and axial rotation energy loss were statistically compared among five conditions: intact, titanium rods (with and without transverse connectors) and cobalt-chromium rods (with and without transverse connectors).

Findings: All fusion constructs significantly (P<0.01) decreased range of motion in flexion-extension and lateral bending with respect to intact, but no significant differences (P>0.05) were observed in axial rotation among all conditions. Intradiscal pressure significantly increased (P≤0.01) after fusion, except for the cobalt-chrome conditions in extension (P≥0.06), and no significant differences (P>0.99) were found among fixation constructs. In terms of energy loss, differences became significant P≤0.05 between the cobalt-chrome with transverse connector condition with respect to the cobalt-chrome and titanium conditions.

Interpretation: There is not enough evidence to support that the cobalt-chrome rods performed biomechanically different than the titanium rods. The inclusion of the transverse connector only increased stability for the cobalt-chromium construct in axial rotation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.clinbiomech.2013.05.001DOI Listing

Publication Analysis

Top Keywords

axial rotation
12
posterior fusion
8
fusion constructs
8
column injuries
8
vitro biomechanical
8
cobalt-chromium rods
8
intradiscal pressure
8
energy loss
8
titanium rods
8
rods transverse
8

Similar Publications

Elbow rotation affects the accuracy of rotational formulas: validation of a modified method.

BMC Musculoskelet Disord

January 2025

Pediatric Orthopedic Hospital, Honghui Hospital, Xi'an Jiao tong University, Xi'an, 710000, China.

Background: Supracondylar humerus fractures (SCHFs) are the most common elbow fractures in children and are typically treated with closed reduction and Kirschner pin fixation. However, varying degrees of residual rotational displacement may remain after closed reduction. Several methods exist to assess rotational displacement, but none account for the effect of elbow rotation on the results.

View Article and Find Full Text PDF

Aluminium-lithium (Al-Li) 2060 alloy, a 3rd generation Al-Li alloy, is considered a structural material for aircraft components. This study employs the Friction Stir Welding (FSW) process with a kinematic 5-axis robotic arm to weld 4-mm-thick plates of 2060-T8E30 Al-Li alloy. The focus is on the impact of tool axial force and speeds on the microstructural evolution, mechanical properties, and surface integrity of the welded joints.

View Article and Find Full Text PDF

Meniscal forces and knee kinematics are affected by tibial slope modifying high tibial osteotomy.

Knee Surg Sports Traumatol Arthrosc

January 2025

Orthopaedic Robotics Laboratory, Departments of Bioengineering and Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.

Purpose: To quantify the effect of increasing the posterior tibial slope (PTS) on knee kinematics and the resultant medial and lateral meniscal forces.

Methods: In this controlled laboratory study, a 6 degrees of freedom (DOF) robotic testing system was used to apply external loading conditions to seven fresh-frozen human cadaveric knees: (1) 200-N axial compressive load, (2) 5-N m internal tibial +10-N m valgus torque and (3) 5-N m external tibial + 10-N m varus torque. Knee kinematics and the resultant medial and lateral meniscal forces were acquired for two PTS states: (1) native PTS and (2) increased PTS.

View Article and Find Full Text PDF

Statement Of Problem: The angled screw channel (ASC) design has been well accepted for implant prostheses. However, investigation into the behavior of the ASC connection is sparse.

Purpose: The purpose of this in vitro study was to assess the effect of cyclic loading on the internal connection of an ASC system compared with straight access systems by measuring reverse torque values (RTVs) and using microcomputed tomography (µCT) imaging.

View Article and Find Full Text PDF

Establishing normative values and understanding how proprioception varies among body parts is crucial. However, the variability across individuals, especially adolescents, makes it difficult to establish norms. This prevents further investigation into classifying patients with abnormal proprioception.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!