Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.immuni.2013.05.003 | DOI Listing |
Cells Dev
January 2025
Department of Agri-Production Sciences, College of Agriculture, Tamagawa University, Tokyo, Japan.
Embryonic development is a complex self-organizing process orchestrated by a series of regulatory events at the molecular and cellular levels, resulting in the formation of a fully functional organism. This review focuses on activin protein as a mesoderm-inducing factor and the self-organizing properties it confers. Activin has been detected in both unfertilized eggs and embryos, suggesting its involvement in early developmental processes.
View Article and Find Full Text PDFCell
January 2025
State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China; Research Center for Proteins & Bits, Lumy Biotechnology, Changzhou, Jiangsu 213200, China. Electronic address:
Biocatalytic cascades with spatial proximity can orchestrate multistep pathways to form metabolic highways, which enhance the overall catalytic efficiency. However, the effect of spatial organization on catalytic activity is poorly understood, and multienzyme architectural engineering with predictable performance remains unrealized. Here, we developed a standardized framework, called iMARS, to rapidly design the optimal multienzyme architecture by integrating high-throughput activity tests and structural analysis.
View Article and Find Full Text PDFCurr Oncol
January 2025
Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, 75006 Paris, France.
(1) Background: Hepatoblastoma and medulloblastoma are two types of pediatric tumors with embryonic origins. Both tumor types can exhibit genetic alterations that affect the β-catenin and Wnt pathways; (2) Materials and Methods: This study used bioinformatics and integrative analysis of multi-omics data at both the tumor and single-cell levels to investigate two distinct pediatric tumors: medulloblastoma and hepatoblastoma; (3) Results: The cross-transcriptome analysis revealed a commonly regulated expression signature between hepatoblastoma and medulloblastoma tumors. Among the commonly upregulated genes, the transcription factor LEF1 was significantly expressed in both tumor types.
View Article and Find Full Text PDFJ Gastrointest Cancer
January 2025
The First Laboratory of Cancer Institute, The First Hospital of China Medical University, Shenyang, 110001, China.
Background: Colorectal cancer (CRC) stands as the third most prevalent malignancy globally and is recognized as the second leading cause of cancer-related mortality. Notably, nearly 50% of individuals diagnosed with CRC ultimately develop metastatic disease, with the peritoneum emerging as the second most frequent site for metastatic spread. Recent advancements in therapeutic frameworks have enhanced both survival rates and quality of life metrics for patients afflicted with colorectal cancer peritoneal metastases (CRCPM).
View Article and Find Full Text PDFmBio
January 2025
Analytical Biochemistry and Proteomics Unit, Instituto de Investigaciones Biológicas Clemente Estable and Institut Pasteur de Montevideo, Montevideo, Uruguay.
Unlabelled: Mycobacteria, including pathogens like , exhibit unique growth patterns and cell envelope structures that challenge our understanding of bacterial physiology. This study sheds light on FhaA, a conserved protein in , revealing its pivotal role in coordinating cell envelope biogenesis and asymmetric growth. The elucidation of the FhaA interactome in living mycobacterial cells reveals its participation in the protein network orchestrating cell envelope biogenesis and cell elongation/division.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!