Electromagnetic assessment of embedded micro antenna for a novel sphincter in the human body.

J Med Eng Technol

Department of Automation, College of Mechatronics Engineering and Automation, Shanghai University, Shanghai, PR China.

Published: May 2013

This paper presents a wireless, miniaturized, bi-directional telemetric artificial anal sphincter system that can be used for controlling patients' anal incontinence. The artificial anal sphincter system is mainly composed of an executive mechanism, a wireless power supply system and a wireless communication system. The wireless communication system consists of an internal RF transceiver, an internal RF antenna, a data transmission pathway, an external RF antenna and an external RF control transceiver. A micro NMHA (Normal Mode Helical Antenna) has been used for the transceiver of the internal wireless communication system and a quarter wave-length whip antenna of 7.75 cm has been used for the external wireless communication system. The RF carrier frequency of wireless communication is located in a license-free 433.1 MHz ISM (Industry, Science, and Medical) band. The radiation characteristics and SAR (Specific Absorption Rate) are evaluated using the finite difference time-domain method and 3D human body model. Results show that the SAR values of the antenna satisfy the ICNIRP (International Commission on Nonionizing Radiation Protection) limitations.

Download full-text PDF

Source
http://dx.doi.org/10.3109/03091902.2013.796011DOI Listing

Publication Analysis

Top Keywords

wireless communication
20
communication system
16
human body
8
artificial anal
8
anal sphincter
8
sphincter system
8
system wireless
8
transceiver internal
8
wireless
7
system
7

Similar Publications

Flexible and wireless metasurface coils for knee and elbow MRI.

Eur Radiol Exp

January 2025

Department of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany.

Background: Metasurface coils (MCs) are a promising magnetic resonance imaging (MRI) technology. Aiming to evaluate the image quality of MCs for knee and elbow imaging, we compared signal-to-noise ratio (SNRs) obtained in standard clinical setups.

Methods: Knee and elbow MRI routine sequences were applied at 1.

View Article and Find Full Text PDF

Ultrathin Terahertz-Wave Absorber Based on Inorganic Materials for 6G Wireless Communications.

ACS Appl Mater Interfaces

January 2025

Nippon Denko Co., Ltd., 1-4-16 Yaesu, Chuo-ku, Tokyo 103-8282, Japan.

Terahertz waves are gathering attention as carrier waves for next-generation wireless communications such as sixth-generation wireless communication networks and autonomous driving systems. Electromagnetic-wave absorbers for the terahertz-wave region are necessary to ensure information security and avoid interference issues. Herein we report a high-performance terahertz-wave absorber composed of a composite of metallic λ-TiO and insulating TiO nanocrystals (λ-TiO@TiO).

View Article and Find Full Text PDF

New applications such as the Internet of Things, autonomous driving, Industry X.0 and many more will transmit sensitive information via fibers and over the air with envisioned data rates beyond terabits per second. Therefore, the encryption has to be simple, fast and spectrally efficient, so that the power consumption and latency are low and the scarce bandwidth is not wasted.

View Article and Find Full Text PDF

A guidance to intelligent metamaterials and metamaterials intelligence.

Nat Commun

January 2025

ZJU-UIUC Institute, Interdisciplinary Center for Quantum Information, State Key Laboratory of Extreme Photonics and Instrumentation, Zhejiang University, Hangzhou, China.

The bidirectional interactions between metamaterials and artificial intelligence have recently attracted immense interest to motivate scientists to revisit respective communities, giving rise to the proliferation of intelligent metamaterials and metamaterials intelligence. Owning to the strong nonlinear fitting and generalization ability, artificial intelligence is poised to serve as a materials-savvy surrogate electromagnetic simulator and a high-speed computing nucleus that drives numerous self-driving metamaterial applications, such as invisibility cloak, imaging, detection, and wireless communication. In turn, metamaterials create a versatile electromagnetic manipulator for wave-based analogue computing to be complementary with conventional electronic computing.

View Article and Find Full Text PDF

The next step in the evolution of static 3-dimensionally (3D) printed models may be the creation of "smart" models, where subcomponents can be seamlessly interacted with through a feedback mechanism, with potential applications in trainee education and patient counseling. Considering the complexity of the ventricular and cisternal systems, they were chosen for segmentation, using Materialize InPrint with outward hollowing using 2.5-mm wall thickness.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!