Background: As use of electrical devices has increased, social concerns about the possible effects of 60 Hz electromagnetic fields on human health have increased. Accordingly, the number of people who complain of various symptoms such as headache and insomnia has risen. Many previous studies of the effects of extremely low frequency (ELF) magnetic field exposure on children have focused on the occurrence of childhood leukaemia and central nervous system cancers. However, very few provocation studies have examined the health effects of ELF magnetic fields on teenagers.

Methods: In this double-blind study, we simultaneously investigated physiological changes (heart rate, respiration rate, and heart rate variability), subjective symptoms, and magnetic field perception to determine the reliable effects of 60 Hz 12.5 μT magnetic fields on teenagers. Two volunteer groups of 30 adults and 30 teenagers were tested with exposure to sham and real magnetic fields for 32 min.

Results: ELF magnetic field exposure did not have any effects on the physiological parameters or eight subjective symptoms in either group. Neither group correctly perceived the magnetic fields.

Conclusions: Physiological data were analysed, subjective symptoms surveyed, and the percentages of those who believed they were being exposed were measured. No effects were observed in adults or teenagers resulting from 32 min of 60 Hz 12.5 μT magnetic field exposure.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3681577PMC
http://dx.doi.org/10.1186/1476-069X-12-42DOI Listing

Publication Analysis

Top Keywords

magnetic fields
16
magnetic field
16
elf magnetic
12
field exposure
12
subjective symptoms
12
fields teenagers
8
magnetic
8
heart rate
8
125 μt
8
μt magnetic
8

Similar Publications

AlgaeSperm: Microalgae-Based Soft Magnetic Microrobots for Targeted Tumor Treatment.

Small

January 2025

School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, China.

Magnetic microrobots are significant platforms for targeted drug delivery, among which sperm-inspired types have attracted much attention due to their flexible undulation. However, mass production of sperm-like soft magnetic microrobots with high-speed propulsion is still challenging due to the need of more reasonable structure design and facile fabrication. Herein, a novel strategy is proposed for large-scale preparation of microalgae-based soft microrobots with a fully magnetic head-to-tail structure, called AlgaeSperm with robust propulsion and chemo-photothermal performance.

View Article and Find Full Text PDF

Multifunctional hardware technologies for neuromorphic computing are essential for replicating the complexity of biological neural systems, thereby improving the performance of artificial synapses and neurons. Integrating ionic and spintronic technologies offers new degrees of freedom to modulate synaptic potentiation and depression, introducing novel magnetic functionalities alongside the established ionic analogue behavior. We demonstrate that magneto-ionic devices can perform as synaptic elements with dynamically tunable depression linearity controlled by an external magnetic field, a functionality reminiscent of neuromodulation in biological systems.

View Article and Find Full Text PDF

Manipulation of Surface Spin Configurations for Enhanced Performance in Oxygen Evolution Reactions.

Nano Lett

January 2025

Jiangxi Provincial Key Laboratory of Green Hydrogen and Advanced Catalysis, College of Physics, Communication and Electronics, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, Jiangxi, China.

studies of the relationship between surface spin configurations and spin-related electrocatalytic reactions are crucial for understanding how magnetic catalysts enhance oxygen evolution reaction (OER) performance under magnetic fields. In this work, 2D FeSe nanosheets with rich surface spin configurations are synthesized via chemical vapor deposition. magnetic force microscopy and Raman spectroscopy reveal that a 200 mT magnetic field eliminates spin-disordered domain walls, forming a spin-ordered single-domain structure, which lowers the OER energy barrier, as confirmed by theoretical calculations.

View Article and Find Full Text PDF

Two features of macrophages make them attractive for targeted transport of drugs: they efficiently take up a broad spectrum of nanoparticles (NPs) and, by sensing cytokine gradients, they are attracted to the sites of infection and inflammation. To expand the potential of macrophages as drug carriers, we investigated whether macrophages could be simultaneously coloaded with different types of nanoparticles, thus equipping individual cells with different functionalities. We used superparamagnetic iron oxide NPs (SPIONs), which produce apoptosis-inducing hyperthermia when exposed to an alternating magnetic field (AMF), and co-loaded them on macrophages together with drug-containing NPs (inorganic-organic nanoparticles (IOH-NPs) or mesoporous silica NPs (MSNs)).

View Article and Find Full Text PDF

Anionic modulation induces molecular polarity in a three-component crown ether system.

Dalton Trans

January 2025

School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, People's Republic of China.

Three-component crown ether phase change materials are characterized by a structural phase change in response to external stimuli such as temperature and electric or magnetic fields, resulting in significant changes in physical properties. In this work, we designed and synthesized two novel host-guest crown ether molecules [(PTFMA)(15-crown-5)ClO] (1) and [(PTFMA)(15-crown-5)PF] (2), through the reaction of -trifluoromethylaniline (PTFMA) with 15-crown-5 in perchloric acid or hexafluorophosphoric acid aqueous solution. Compound 1 undergoes a structural change from the non-centrosymmetric space group (2) to the centrosymmetric space group (2/) with increasing temperature.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!