A study is reported of the functional-relevant dynamics of three typical water-soluble proteins: Calmodulin, Src-tyrosine kinase as well as repressor of Trp operon. Application of the state-of-art methods of structural bioinformatics allowed to identify dynamics seen in the X-ray structures of the investigated proteins associated with their specific biological functions. In addition, Normal Mode analysis technique revealed the most probable directions of the functionally-relevant motions for all that proteins were also predicted. Importantly, overall type of the motions observed on the lowest-frequency modes was very similar to the motions seen from the analysis of the X-ray data of the examined macromolecules. Thereby it was shown that the large-scale as well as local conformational motions of the proteins might be predetermined already at the level of their tertiary structures. In particular, the determining factor might be the specific fold of the alpha-helixes. Thus functionally-relevant in vivo dynamics of the investigated proteins might be evolutionally formed by means of natural selection at the level of the spatial topology.

Download full-text PDF

Source
http://dx.doi.org/10.7868/s0026898413010114DOI Listing

Publication Analysis

Top Keywords

investigated proteins
8
motions proteins
8
proteins
5
[functionally-relevant conformational
4
dynamics
4
conformational dynamics
4
dynamics water-soluble
4
water-soluble proteins]
4
proteins] study
4
study reported
4

Similar Publications

Objective: TRIB3 has been confirmed to participate in and regulate biological metabolic activities in head and neck tumors such as nasopharyngeal carcinoma and oropharyngeal carcinoma, so the purpose of this study was to explore whether there is a correlation between TRIB3 and Laryngeal Squamous Cell Carcinoma (LSCC) and to preliminarily explore the biological characteristics of TRIB3 in LSCC.

Methods: TRIB3 expression in the LSCC was analyzed based on The Cancer Genome Atlas (TCGA) database. CCK-8 assay, Colony Formation Assay, wound healing assay, and Transwell assay were performed to investigate the roles of TRIB3 in the proliferation, invasion and metastasis of LSCC.

View Article and Find Full Text PDF

Development of translationally active cell lysates from different filamentous fungi for application in cell-free protein synthesis.

Enzyme Microb Technol

January 2025

Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, Universitätsplatz 1, Senftenberg 01968, Germany. Electronic address:

There is an enormous potential for cell-free protein synthesis (CFPS) systems based on filamentous fungi in view of their simple, fast and mostly inexpensive cultivation with high biomass space-time yields and in view of their catalytic capacity. In 12 of the 22 different filamentous fungi examined, in vitro translation of at least one of the two reporter proteins GFP and firefly luciferase was detected. The lysates showing translation of a reporter protein usually were able to synthesize a functional cell-free expressed unspecific peroxygenase (UPO) from the basidiomycete Cyclocybe (Agrocybe) aegerita.

View Article and Find Full Text PDF

Background: Numerous studies have assessed the risk of SARS-CoV-2 exposure and infection among health care workers during the pandemic. However, far fewer studies have investigated the impact of SARS-CoV-2 on essential workers in other sectors. Moreover, guidance for maintaining a safely operating workplace in sectors outside of health care remains limited.

View Article and Find Full Text PDF

Purpose: Outcomes for patients with advanced sarcomas are poor and there is a high unmet need to develop novel therapies. The purpose of this phase I study was to define the safety and efficacy of botensilimab (BOT), an Fc-enhanced anti-cytotoxic lymphocyte-association protein-4 antibody, plus balstilimab (BAL), an anti-PD-1 antibody, in advanced sarcomas.

Methods: BOT was administered intravenously (IV) at 1 mg/kg or 2 mg/kg once every 6 weeks in combination with BAL IV at 3 mg/kg once every 2 weeks for up to 2 years.

View Article and Find Full Text PDF

Cyanobacterial phycoremediation: a sustainable approach to dairy wastewater management.

Environ Technol

January 2025

Botany Discipline, School of Biological Sciences and Biotechnology, Goa University, Goa, India.

The dairy industry is a significant sector within the food industries, known for its high-water consumption and consequent generation of dairy wastewater (DWW), which is rich in pollutants like Chemical Oxygen Demand (COD) and Biological Oxygen Demand (BOD). Improper disposal of DWW poses serious environmental challenges, including eutrophication and highlighting the need for sustainable biological treatment methods. This study investigates the potential of indigenous cyanobacterial strains , , , and for the bioremediation of DWW.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!