The binding of [3H]pyrilamine, a selective ligand of histamine H1 receptors, to guinea pig brain in vivo was compared with its binding to a brain homogenate. The pharmacological properties (regional distribution, saturability, and stereoselectivity) of the [3H]pyrilamine binding in vivo were similar to those of the in vitro binding to brain homogenate. A dynamic four-compartment model was proposed for the analysis of the kinetics of [3H]pyrilamine binding in vivo. The receptor constants in vivo were determined by a computer-fitting method after correcting the radioactivity of arterial plasma and brain for the presence of radioactive metabolites. The in vivo association and dissociation were 213 and 42 times, respectively, slower than those of in vitro binding at 37 degrees C. A possible mechanism for slow association and dissociation in vivo is discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1471-4159.1990.tb04152.x | DOI Listing |
Fluids Barriers CNS
May 2024
Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark.
Background: Triptans are anti-migraine drugs with a potential central site of action. However, it is not known to what extent triptans cross the blood-brain barrier (BBB). The aim of this study was therefore to determine if triptans pass the brain capillary endothelium and investigate the possible underlying mechanisms with focus on the involvement of the putative proton-coupled organic cation (H/OC) antiporter.
View Article and Find Full Text PDFMol Pharmacol
January 2024
Amsterdam Institute for Molecules, Medicines, and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Sciences, VU University Amsterdam, Amsterdam, The Netherlands (D.A.M.-F., A.J.K., R.L.); Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark (A.J.K.); Department of Anatomy, University of Helsinki, Helsinki, Finland (Y.-C.C., P.P.); and Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, México (J.-A.A.-M.)
The zebrafish (Danio rerio) histamine H receptor gene (zfHR) was cloned in 2007 and reported to be involved in fish locomotion. Yet, no detailed characterization of its pharmacology and signaling properties have so far been reported. In this study, we pharmacologically characterized the zfHR expressed in HEK-293T cells by means of [H]-mepyramine binding and G protein-signaling assays.
View Article and Find Full Text PDFInt Immunopharmacol
September 2022
Medical Research Center, Binzhou Medical University Hospital, Binzhou, China; Department of Pharmacology, School of Basic Medicine, Binzhou Medical University, Yantai, China. Electronic address:
Adult neurogenesis in hippocampus dentate gyrus (DG) is associated with numerous neurodegenerative diseases such as aging and Alzheimer's disease (AD). Overactivation of microglia induced neuroinflammation is well acknowledged to contribute to the impaired neurogenesis in pathologies of these diseases and then leading to cognitive dysfunction. Histamine H3 receptor (H3R) is a presynaptic autoreceptor regulating histamine release via negative feedback way.
View Article and Find Full Text PDFCurr Top Behav Neurosci
September 2022
Department of Anatomy, University of Helsinki, Helsinki, Finland.
Three of the four histamine receptors have been identified in zebrafish. Whereas only one histamine receptor 1 gene (hrh1) is known, two copies of histamine receptor 2 (hrh2a and hrh2b) have been identified. Although initially only one gene encoding for histamine receptor 3 (hrh3) was recognized in zebrafish, the genome database contains information for two more hrh3-like genes, whereas no genes corresponding for histamine receptor 4 with expression mainly in the immune system have been identified.
View Article and Find Full Text PDFDrug Res (Stuttg)
November 2020
Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing, P. R. China.
Loratadine (LOR) and its major metabolite, desloratadine (DL) are new-generation antihistamines. The hydroxylated metabolites of them, 6-OH-DL, 5-OH-DL and 3-OH-DL are also active because of their ability to inhibit binding of pyrilamine to brain H receptors and a tendency for distributing to specific immune-regulatory tissues. In this study, a new validated LC-MS/MS method to simultaneously quantify LOR, DL, 6-OH-DL, 5-OH-DL and 3-OH-DL in plasma and tissues was established and applied to an investigation of their pharmacokinetics and target-tissue distribution tendency for the first time.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!