A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

[Extraction of temperate vegetation phenology thresholds in North America based on flux tower observation data]. | LitMetric

[Extraction of temperate vegetation phenology thresholds in North America based on flux tower observation data].

Ying Yong Sheng Tai Xue Bao

Key Laboratory of Digital Earth Science, Chinese Academy of Sciences, Beijing, China.

Published: February 2013

Flux tower method can effectively monitor the vegetation seasonal and phenological variation processes. At present, the differences in the detection and quantitative evaluation of various phenology extraction methods were not well validated and quantified. Based on the gross primary productivity (GPP) and net ecosystem productivity (NEP) data of temperate forests from 9 forest FLUXNET sites in North America, and by using the start dates (SOS) and end dates (EOS) of the temperate forest growth seasons extracted by different phenology threshold extraction methods, in combining with the forest ecosystem carbon source/sink functions, this paper analyzed the effects of different threshold standards on the extraction results of the vegetations phenology. The results showed that the effects of different threshold standards on the stability of the extracted results of deciduous broadleaved forest (DBF) phenology were smaller than those on the stability of the extracted results of evergreen needleleaved forest (ENF) phenology. Among the extracted absolute and relative thresholds of the forests GPP, the extracted threshold of the DBF daily GPP= 2 g C.m-2.d-1 had the best agreement with the DBF daily GPP = 20% maximum GPP (GPPmax) , the phenological metrics with a threshold of daily GPP = 4 g C.m-2.d-1 was close to that between daily GPP = 20% GPPmax and daily GPP = 50% GPPmax, and the start date of ecosystem carbon sink function was close to the SOS metrics between daily GPP = 4 g C.m-2.d-1 and daily GPP= 20% GPPmax. For ENF, the phenological metrics with a threshold of daily GPP = 2 g C.m-2.d-1 and daily GPP = 4 g C.m-2.d-1 had the best agreement with the daily GPP = 20% GPPmax and daily GPP = 50% GPPmax, respectively, and the start date of the ecosystem carbon sink function was close to the SOS metrics between daily GPP = 2 g C.m-2.d-1 and daily GPP= 10% GPPmax.

Download full-text PDF

Source

Publication Analysis

Top Keywords

daily gpp
40
gpp cm-2d-1
20
gpp
13
daily
13
ecosystem carbon
12
daily gpp=
12
gpp 20%
12
20% gppmax
12
cm-2d-1 daily
12
north america
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!