Background: Superoxide dismutases (SODs) cause dismutation of superoxide radicals to hydrogen peroxide and oxygen. Besides protecting the cells against oxidative damage by endogenously generated oxygen radicals, SODs play an important role in intraphagocytic survival of pathogenic bacteria. The complete genome sequences of Yersinia enterocolitica strains show presence of three different sod genes. However, not much is known about the types of SODs present in Y. enterocolitica, their characteristics and role in virulence and intraphagocytic survival of this organism.

Methodology/principal Findings: This study reports detection and distribution of the three superoxide dismutase (sodA, sodB and sodC) genes in 59 strains of Y. enterocolitica and related species. The majority (94%) of the strains carried all three genes and constitutive expression of sodA and sodB was detected in 88% of the strains. Expression of sodC was not observed in any of the strains. The sodA, sodB and sodC genes of Y. enterocolitica were cloned in pET28a (+) vector. Recombinant SodA (82 kDa) and SodB (21 kDa) were expressed as homotetramer and monomer respectively, and showed activity over a broad range of pH (3.0-8.0) and temperature (4-70°C). SodA and SodB showed optimal activity at 4°C under acidic pH of 6.0 and 4.0 respectively. The secondary structures of recombinant SodA and SodB were studied using circular dichroism. Production of YeSodC was not observed even after cloning and expression in E. coli BL21(DE3) cells. A SodA(-) SodB(-) Escherichia coli strain which was unable to grow in medium supplemented with paraquat showed normal growth after complementation with Y. enterocolitica SodA or SodB.

Conclusions/significance: This is the first report on the distribution and characterization of superoxide dismutases from Y. enterocolitica. The low pH optima of both SodA and SodB encoded by Y. enterocolitica seem to implicate their role in acidic environments such as the intraphagocytic vesicles.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3660340PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0063919PLOS

Publication Analysis

Top Keywords

soda sodb
24
superoxide dismutases
12
detection distribution
8
distribution characterization
8
enterocolitica
8
yersinia enterocolitica
8
intraphagocytic survival
8
soda
8
sodb sodc
8
sodc genes
8

Similar Publications

The evolution of oxygenic photosynthesis during the Archean (4-2.5 Ga) required the presence of complementary reducing pathways to maintain the cellular redox balance. While the timing of the evolution of superoxide dismutases (SODs), enzymes that convert superoxide to hydrogen peroxide and O, within bacteria and archaea is not resolved, the first SODs appearing in cyanobacteria contained copper and zinc in the reaction center (CuZnSOD).

View Article and Find Full Text PDF

Uncovering the effects of non-lethal oxidative stress on replication initiation in Escherichia coli.

Gene

January 2025

Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China. Electronic address:

Cell cycle adaptability assists bacteria in response to adverse stress. The effect of oxidative stress on replication initiation in Escherichia coli remains unclear. This work examined the impact of exogenous oxidant and genetic mutation-mediated oxidative stress on replication initiation.

View Article and Find Full Text PDF

Deterministic effect of oxygen level variation on shaping antibiotic resistome.

J Hazard Mater

March 2024

Environmental Biotechnology & Genomics Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur 440020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India. Electronic address:

An increase in acquisition of antibiotic resistance genes (ARGs) by pathogens under antibiotic selective pressure poses public health threats. Sub-inhibitory antibiotics induce bacteria to generate reactive oxygen species (ROS) dependent on dissolved oxygen (DO) levels, while molecular connection between ROS-mediated ARG emergence through DNA damage and metabolic changes remains elusive. Thus, the study investigates antibiotic resistome dynamics, microbiome shift, and pathogen distribution in hyperoxic (5-7 mg L), normoxic (2-4 mg L), and hypoxic (0.

View Article and Find Full Text PDF

Background: Pentavalent antimonial has been a drug of choice against leishmaniasis, despite the emergence of treatment failure. Identification of resistance markers is urgently needed to design new therapeutic strategies. Iron-Superoxide dismutases (Fe-SODs) are antioxidant enzymes contributing to detoxify reactive oxygen species to prevent a cell from oxidative stress.

View Article and Find Full Text PDF

The detection of reactive oxygen species (ROS) and the analysis of oxidative stress are frequent applications of functional flow cytometry. Identifying and quantifying the ROS species generated during oxidative stress are crucial steps for the investigation of molecular mechanisms underlying stress responses. Currently, there is a wide availability of fluorogenic substrates for such purposes, but limitations in their specificity and sensitivity may affect the accuracy of the analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!