Mutations in the myosin VIIa gene cause Usher syndrome type IB (USH1B), characterized by deaf-blindness. A delay of opsin trafficking has been observed in the retinal photoreceptor cells of myosin VIIa-deficient mice. We identified spectrin βV, the mammalian β-heavy spectrin, as a myosin VIIa- and rhodopsin-interacting partner in photoreceptor cells. Spectrin βV displays a polarized distribution from the Golgi apparatus to the base of the outer segment, which, unlike that of other β spectrins, matches the trafficking route of opsin and other phototransduction proteins. Formation of spectrin βV-rhodopsin complex could be detected in the differentiating photoreceptors as soon as their outer segment emerges. A failure of the spectrin βV-mediated coupling between myosin VIIa and opsin molecules thus probably accounts for the opsin transport delay in myosin VIIa-deficient mice. We showed that spectrin βV also associates with two USH1 proteins, sans (USH1G) and harmonin (USH1C). Spectrins are supposed to function as heteromers of α and β subunits, but fluorescence resonance energy transfer and in vitro binding experiments indicated that spectrin βV can also form homodimers, which likely supports its αII-independent βV functions. Finally, consistent with its distribution along the connecting cilia axonemes, spectrin βV binds to several subunits of the microtubule-based motor proteins, kinesin II and the dynein complex. We therefore suggest that spectrin βV homomers couple some USH1 proteins, opsin and other phototransduction proteins to both actin- and microtubule-based motors, thereby contributing to their transport towards the photoreceptor outer disks.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/hmg/ddt228 | DOI Listing |
Antioxidants (Basel)
December 2024
Laboratorio de Hematobiología, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City 07700, Mexico.
Oxidative stress is widely recognized as a key mechanism in the development of hypertension. Under pathological conditions, such as in hypertension, oxidative stress leads to irreversible posttranslational modifications of proteins, which result in loss of protein function and cellular damage. We have previously documented physiological and morphological changes across various blood and bone marrow cell lineages, all of which exhibit elevated oxidative stress.
View Article and Find Full Text PDFJ Cell Sci
January 2025
Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA 92093, USA.
The plasma membrane and the underlying skeleton form a protective barrier for eukaryotic cells. The molecular players forming this complex composite material constantly rearrange under mechanical stress. One of those molecules, spectrin, is ubiquitous in the membrane skeleton and linked by short actin filaments.
View Article and Find Full Text PDFActa Pharmacol Sin
January 2025
The Fifth Affiliated Hospital, Guangdong Province & NMPA & State Key Laboratory, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China.
Vascular smooth muscle cell (VSMC) phenotypic switching plays a crucial role in the initiation and progression of atherosclerosis. Dehydrocorydaline (DHC), a major active component of the traditional Chinese herbal medicine Rhizoma Corydalis, exhibits diverse pharmacological effects. However, its impact on VSMCs remains largely unknown.
View Article and Find Full Text PDFIndian J Pediatr
January 2025
Centre of Excellence and Advanced Research for Childhood Neurodevelopmental Disorders, Child Neurology Division, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India.
Objectives: To observe the prevalence of impaired pulmonary function during various phases of the disease course in children aged 5-18 y with dystrophinopathy. The correlation between different parameters of pulmonary dysfunction and motor function was also studied.
Methods: One hundred and thirty-three confirmed cases of Duchenne muscular dystrophy (DMD), fulfilling predefined inclusion and exclusion criteria were evaluated.
Endocrinology
January 2025
Graduate Program in Cellular and Molecular Biology.
SH2B1β is a multifunctional scaffold protein that modulates cytoskeletal processes such as cellular motility and neurite outgrowth. To identify novel SH2B1β-interacting proteins involved in these processes, a yeast two-hybrid assay was performed. The C-terminal 159 residues of the cytoskeleton structural protein, βIIΣ1-spectrin, interacted with the N-terminal 260 residues of SH2B1β, a region implicated in SH2B1β enhancement of cell motility and localization at the plasma membrane.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!