Background: Chondroitin/dermatan sulfate (CS/DS) proteoglycans present in the extracellular matrix have important structural and regulatory functions.
Results: Six human genes have previously been shown to catalyze CS/DS polymerization. Here we show that one of these genes, chpf, is represented by two copies in the zebrafish genome, chpfa and chpfb, while the other five human CS/DS glycosyltransferases csgalnact1, csgalnact2, chpf2, chsy1, and chsy3 all have single zebrafish orthologues. The putative zebrafish CS/DS glycosyltransferases are spatially and temporally expressed. Interestingly, overlapping expression of multiple glycosyltransferases coincides with high CS/DS deposition. Finally, whereas the relative levels of the related polysaccharide HS reach steady-state at around 2 days post fertilization, there is a continued relative increase of the CS amounts per larvae during the first 6 days of development, matching the increased cartilage formation.
Conclusions: There are 7 CS/DS glycosyltransferases in zebrafish, which, based on homology, can be divided into the CSGALNACT, CHSY, and CHPF families. The overlap between intense CS/DS production and the expression of multiple CS/DS glycosyltransferases suggests that efficient CS/DS biosynthesis requires a combination of several glycosyltransferases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/dvdy.23981 | DOI Listing |
PLoS Genet
February 2022
Department of Organismal Biology, Uppsala University, Uppsala, Sweden.
Chondroitin/dermatan sulfate (CS/DS) proteoglycans are indispensable for animal development and homeostasis but the large number of enzymes involved in their biosynthesis have made CS/DS function a challenging problem to study genetically. In our study, we generated loss-of-function alleles in zebrafish genes encoding CS/DS biosynthetic enzymes and characterized the effect on development in single and double mutants. Homozygous mutants in chsy1, csgalnact1a, csgalnat2, chpfa, ust and chst7, respectively, develop to adults.
View Article and Find Full Text PDFFront Cell Dev Biol
November 2021
Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, Nagoya, Japan.
Chondroitin sulfate (CS), dermatan sulfate (DS) and heparan sulfate (HS) are covalently attached to specific core proteins to form proteoglycans in their biosynthetic pathways. They are constructed through the stepwise addition of respective monosaccharides by various glycosyltransferases and maturated by epimerases as well as sulfotransferases. Structural diversities of CS/DS and HS are essential for their various biological activities including cell signaling, cell proliferation, tissue morphogenesis, and interactions with a variety of growth factors as well as cytokines.
View Article and Find Full Text PDFMethods Mol Biol
January 2022
Department of Chemistry, Lund University, Lund, Sweden.
β-1,4-Galactosyltransferase 7 (β4GalT7) is a key enzyme in the synthesis of two classes of glycosaminoglycans (GAG), i.e., heparan sulfate (HS) and chondroitin/dermatan sulfate (CS/DS).
View Article and Find Full Text PDFJ Orthop Res
October 2018
Department of Bioengineering, University of Illinois at Chicago, 851 S. Morgan Street, Chicago, Illinois, 60607.
Hyaluronan (HA), a high molecular weight non-sulfated glycosaminoglycan, is an integral component of the extracellular matrix of developing and mature connective tissues including tendon. There are few published reports quantifying HA content during tendon growth and maturation, or detailing its effects on the mechanical properties of the tendon extracellular matrix. Therefore, the goal of the current study was to examine the role of HA synthesis during post-natal skeletal growth and maturation, and its influence on tendon structure and biomechanical function.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
March 2018
Department of Pharmacology, Kansai Medical University, Osaka, Japan.
Purpose: Synthesis of keratan sulfate (KS) relies on coordinated action of multiple enzymes, including the N-acetylglucosamine-transferring enzyme, β-1,3-N-acetylglucosaminyltransferase-7 (β3GnT7). A mouse model deficient in β3GnT7 was developed to explore structural changes in KS and the extracellular matrix (ECM; i.e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!