We have previously reported the isolation of a novel single-chain variable fragment (scFv) against vascular endothelial growth factor (VEGF), from a phage-displayed human antibody repertoire. This scFv, denominated 2H1, was shown to block the binding of VEGF to its receptor but exhibited a moderate binding affinity. Here, we describe the affinity maturation of the 2H1 scFv. Two phage-displayed libraries were constructed by diversification of the third complementarity-determining regions (CDRs) of the light (VL) and heavy (VH) chain variable domains of 2H1 using parsimonious mutagenesis. A competitive phage-selection strategy in the presence of the parental scFv as a competitor was used to eliminate low affinity binders. High affinity variants were retrieved from both libraries. An optimized VL variant was designed and constructed by combining recurrent replacements found among selected variants in a single molecule, resulting in an additional affinity increase. Further affinity improvements were achieved by combining this optimized VL with the best VH variants. The final variant obtained here, L3H6, showed an overall affinity improvement of 18-fold over the parental scFv and exhibited an enhanced potency to block the binding of VEGF to its receptor. Using phage display and extensive mutagenesis of VEGF, we determined the fine specificity of L3H6. This functional mapping revealed a novel neutralizing epitope on human VEGF defined by the residues Y25, T71, E72, N100, K101, E103 and R105. The conformational epitope recognized by L3H6 was recapitulated by grafting human VEGF residues into the mouse molecule, providing further confirmation of the nature of the identified epitope.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c3mb70136kDOI Listing

Publication Analysis

Top Keywords

affinity
8
affinity maturation
8
functional mapping
8
novel neutralizing
8
neutralizing epitope
8
epitope human
8
vascular endothelial
8
endothelial growth
8
growth factor
8
block binding
8

Similar Publications

Computer simulation was utilized to characterize the electrophoretic processes occurring during the enantioselective capillary electrophoresis-mass spectrometry (CE-MS) analysis of ketamine, norketamine, and hydroxynorketamine in a system with partial filling of the capillary with 19 mM (equals 5%) of highly sulfated γ-cyclodextrin (HS-γ-CD) and analyte detection on the cathodic side. Provided that the sample is applied without or with a small amount of the chiral selector, analytes become quickly focused and separated in the thereby formed HS-γ-CD gradient at the cathodic end of the sample compartment. This gradient broadens with time, remains stationary, and gradually reduces its span from the lower side due to diffusion such that analytes with high affinity to the anionic selector become released onto the other side of the focusing gradient where anionic migration and defocusing occur concomitantly.

View Article and Find Full Text PDF

Directed evolution of antimicrobial peptides using multi-objective zeroth-order optimization.

Brief Bioinform

November 2024

School of Computer Science and Technology, Harbin Institute of Technology, HIT Campus, Shenzhen University Town, Nanshan District, Shenzhen 518055, Guangdong, China.

Antimicrobial peptides (AMPs) emerge as a type of promising therapeutic compounds that exhibit broad spectrum antimicrobial activity with high specificity and good tolerability. Natural AMPs usually need further rational design for improving antimicrobial activity and decreasing toxicity to human cells. Although several algorithms have been developed to optimize AMPs with desired properties, they explored the variations of AMPs in a discrete amino acid sequence space, usually suffering from low efficiency, lack diversity, and local optimum.

View Article and Find Full Text PDF

Trends in nanobody radiotheranostics.

Eur J Nucl Med Mol Imaging

January 2025

Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave., Wuhan, Hubei, 430022, China.

As the smallest antibody fragment with specific binding affinity, nanobody-based nuclear medicine has demonstrated significant potential to revolutionize the field of precision medicine, supported by burgeoning preclinical investigations and accumulating clinical evidence. However, the visualization of nanobodies has also exposed their suboptimal biodistribution patterns, which has spurred collaborative efforts to refine their pharmacokinetic and pharmacodynamic profiles for improved therapeutic efficacy. In this review, we present clinical results that exemplify the benefits of nanobody-based molecular imaging in cancer diagnosis.

View Article and Find Full Text PDF

Objective: To test whether messenger RNA (mRNA) splicing is altered in neutrophils from patients with systemic lupus erythematosus (SLE) and can produce neoantigens.

Methods: RNA sequencing of neutrophils from patients with SLE (n = 15) and healthy donors (n = 12) were analyzed for mRNA splicing using the RiboSplitter pipeline, an event-focused tool based on SplAdder with subsequent translation and protein domain annotation. RNA sequencing from SARS-CoV2-infected individuals was used as an additional comparator.

View Article and Find Full Text PDF

Post-synthesis surface modification of Cu/Zr metal azolate framework: A pathway to highly sensitive electrochemical biosensors for atrazine detection.

Anal Chim Acta

February 2025

Dept. of Electronic Materials Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea. Electronic address:

Background: Atrazine (ATZ), a pesticide that poses serious health problems, is observed in the environment, thereby prompting its periodic monitoring and control using functional biosensors. However, established methods for ATZ detection have limited applicability. Two-dimensional (2D) metal azolate frameworks (MAF) have a higher surface area per unit volume and provide easier access to active sites.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!