AI Article Synopsis

  • Polyphenol oxidases (PPOs) are crucial for tea plants' defense against herbivores like the tea geometrid Ectropis obliqua, with increases in PPO activity linked to jasmonic acid (JA) treatment.
  • Caterpillars of Ectropis obliqua showed slower growth and reduced weight gain on JA-treated tea plants compared to control plants, indicating a dose-dependent relationship between JA and caterpillar development.
  • Ectropis obliqua caterpillars can inhibit the production of PPOs in response to mechanical wounding and herbivore regurgitant, suggesting they have adapted to overcome the tea plants' defense mechanisms.

Article Abstract

Polyphenol oxidases (PPOs) have been reported to play an important role in protecting plants from attack by herbivores. However, little is known about their role in tea. Here, we investigated the effect of PPOs on interactions between tea plants and the tea geometrid Ectropis obliqua, one of the most important insect pests of tea. Jasmonic acid (JA) treatment resulted in increases in PPO activity, and the effect of JA was dose dependent. Ectropis obliqua caterpillars grew and developed more slowly on JA-treated tea plants than on control plants, and larval weight gains depended on the JA dosage. Artificial diet complemented with PPOs reduced the growth and survival rate of E. obliqua caterpillars, and there was a negative relationship between PPO level and larval growth and survival. Unlike mechanical wounding, which is an effective inducer of tea plant PPO activity, wounding plus the herbivore regurgitant or herbivore infestation suppressed the wound-induced PPO activities, especially at 4 days after treatment. These results suggest that PPOs are an important anti-herbivore factor in tea plants, defending them against E. obliqua larvae, and that E. obliqua larvae have evolved to elude the tea plant's defense by inhibiting the production of PPOs.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10886-013-0296-xDOI Listing

Publication Analysis

Top Keywords

tea plants
16
ectropis obliqua
12
tea
10
tea geometrid
8
geometrid ectropis
8
polyphenol oxidases
8
ppo activity
8
obliqua caterpillars
8
growth survival
8
obliqua larvae
8

Similar Publications

Medicinal plants often harbour various endophytic actinomycetia, which are well known for their potent antimicrobial properties and plant growth-promoting traits. In this study, we isolated an endophytic actinomycetia, A13, from the leaves of tea clone P312 from the MEG Tea Estate, Meghalaya, India. The isolate A13 was identified as Streptomyces sp.

View Article and Find Full Text PDF

Multienzyme cascade for synthesis of hydroxytyrosol via engineered Escherichia coli.

Sci Rep

January 2025

Dabie Mountain Laboratory, College of Tea and Food Science, Xinyang Normal University, Xinyang, 464000, Henan, China.

Hydroxytyrosol, a fine chemical, is widely utilized in food and pharmaceutical industries. In this study, we constructed a pathway to produce hydroxytyrosol by co-expressing tyrosin-phenol lyase (TPL), L-amino acid dehydrogenase (aadL), α-keto acid decarboxylase (KAD), aldehyde reductase (yahK) and glucose dehydrogenase (gdh). We changed combinations between plasmids with different copy numbers and target genes, resulting in 84% increase in hydroxytyrosol production.

View Article and Find Full Text PDF

The microRNAs and phasiRNAs of plant are small non-coding RNAs with important functions through regulating gene expression at the post-transcriptional level. However, identifying miRNAs, phasiRNAs and their target genes from numerous sequencing raw data requires multiple software and command-line operations, which are time-consuming and labor-intensive for non-model plants. Therefore, we present CsMPDB (miRNAs and phasiRNAs database of Camellia sinensis), an interactive web application with multiple analysis modules developed to visualize and explore miRNA and phasiRNA in tea plants based on 259 sRNA-seq samples and 24 degradome-seq samples in NCBI.

View Article and Find Full Text PDF

NMR Spectroscopic Reference Data of Synthetic Cannabinoids Sold on the Internet.

Magn Reson Chem

January 2025

Institute of Pharmaceutical Sciences, Department of Pharmaceutical Chemistry, University of Graz, Graz, Austria.

Besides classic illegal drugs, numerous designer drugs, also called new psychoactive substances (NPSs), are available on the global drug market. One of the biggest and fastest-growing substance classes comprises the synthetic cannabinoids. According to the European Monitoring Centre for Drugs and Drug Addiction (EMCDDA), 254 out of 950 monitored substances belong to this group of NPS, with 9 new cannabinoids registered for the first time in 2023.

View Article and Find Full Text PDF

Technoeconomic evaluation of integrating hydrothermal liquefaction in wastewater treatment plants.

Bioresour Technol

December 2024

Department of Biological and Chemical Engineering, Aarhus University, Hangøvej 2, Aarhus 8200, Denmark; WATEC - Center for Water Technology, Aarhus University, Ny Munkegade 120, Aarhus 8000, Denmark. Electronic address:

This study provides a techno-economic analysis (TEA) of biocrude production via hydrothermal liquefaction (HTL), focusing on decentralized HTL plants integrated within wastewater treatment plants (WWTPs) of typical sizes (0.1 to 1.0 million population equivalents, PE).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!