The aim of this study was to investigate the process transfer of a commercially available product from the current batch fluid bed granulation and drying production method to an innovative continuously operating "from powder to tablet" production line using twin screw granulation as an intermediate granulation step. By monitoring process outcomes (torque, water temperature at the granulator jacket inlet, differential pressure over the dryer filters, and temperature mill screen) and granule and tablet quality in function of process time, the stability and repeatability during long production runs were determined. Three consecutive 5h "from powder to tablet" production runs were performed using the ConsiGma™-25 system (GEA Pharma Systems, Collette™, Wommelgem, Belgium). A premix of two active ingredients, powdered cellulose, maize starch, pregelatinized starch, and sodium starch glycolate was granulated with distilled water. After drying and milling (1000 μm and 800 rpm), granules were in-line blended with magnesium stearate and directly compressed using a Modul™ P tablet press (tablet weight: 430 mg, main compression force: 12 kN). Granule (loss on drying, particle size distribution, friability, flow) and tablet (weight uniformity, hardness, thickness, friability, content uniformity, disintegration time, and dissolution) quality was evaluated in function of process time. For each of the logged process outcomes, a stabilization period was needed to reach steady-state conditions. Slightly deviating particle size distribution and friability results for milled granules were observed during start-up due to initial layering of the mill screen. However, no deviating tablet quality was detected in function of process time. For multiple hours, granule and tablet quality was constant in function of process time. Furthermore, process data trends were highly repeatable. Consequently, the ConsiGma™-25 system can be considered as a stable and repeatable system for the continuous production of tablets via wet granulation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejpb.2013.05.002 | DOI Listing |
J Exp Biol
January 2025
Grupo de Ecología Fisiológica y del Comportamiento. Instituto de Investigaciones Marinas y Costeras (IIMyC). CONICET - Universidad Nacional de Mar del Plata, Argentina.
Animal thermoregulation may have significant costs and compete directly or indirectly with other energetically demanding processes, such as immune function. Although the subterranean environment is characterized by thermally-stable conditions, small changes in ambient temperature could be critical in shaping immunity. However, little is known about the effects of ambient temperature, in naturally varying ranges, on immunity of wild species.
View Article and Find Full Text PDFEndovascular thrombectomy (EVT) dramatically improves clinical outcomes, but the final infarct volume (FIV) on MRI only accounts for a minority of the treatment effect. An imaging biomarker that more strongly correlates with post-EVT functional outcome would be helpful for clinical prognosis and serve as a surrogate outcome measure in trials of EVT-adjuvant therapies. Here, we aimed to validate a novel MRI-based metric, infarct density, which leverages post-EVT apparent diffusion coefficient (ADC) as a marker of infarct severity.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Departamento de Físico-Química, Instituto de Química - Universidade Federal da Bahia, Rua Barão de Jeremoabo, 147, Salvador, Bahia, 40170-115, Brazil.
We report a computational study of the gas-phase and water-mediated mechanisms for the oxidation of carbonyl sulfide (OCS) by the hydroxyl radical. To achieve reliable results, we employ a dual-level strategy within interpolated single-point energies (VTST-ISPE) at the CCSD(T)/aug-cc-pVTZ//M06-2X/aug-cc-pVTZ level of theory. In the gas-phase mechanism, we have determined the rate constants by kinetic Monte Carlo simulation in the interval of temperatures of 250-550 K.
View Article and Find Full Text PDFChem Sci
January 2025
State Key Laboratory of Silicate Materials for Architectures & State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & School of Chemistry, Chemical Engineering and Life Sciences & Laoshan Laboratory & School of Materials Science and Engineering, Wuhan University of Technology Wuhan 430070 China
Cell-interface engineering is a way to functionalize cells through direct or indirect self-assembly of functional materials around the cells, showing an enhancement to cell functions. Among the materials used in cell-interface engineering, natural biomolecules play pivotal roles in the study of biological interfaces, given that they have good advantages such as biocompatibility and rich functional groups. In this review, we summarize and overview the development of studies of natural biomolecules that have been used in cell-biointerface engineering and then review the five main types of biomolecules used in constructing biointerfaces, namely DNA polymers, amino acids, polyphenols, proteins and polysaccharides, to show their applications in green energy, biocatalysis, cell therapy and environmental protection and remediation.
View Article and Find Full Text PDFInt J Endocrinol
January 2025
Nephrology Department, Jiangxi Provincial Key Research Laboratory of Traditional Chinese Medicine, Key Research Laboratory of Chronic Renal Failure, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330006, China.
This study aimed to investigate the potential mechanisms of puerarin in alleviating diabetic nephropathy (DKD) in mice. The DKD model was induced by multiple low-dose injections of streptozotocin (STZ) and a high-sugar and high-fat diet in male C57BL/6J mice. After confirming the onset of DKD, mice were given irbesartan, distilled water, or different concentrations of puerarin (40 and 80 mg/kg/d) by gavage for 8 weeks.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!