Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Antioxidant (AO) efficiencies are reported to go through maxima with increasing chain length (hydrophobicity) in emulsions. The so-called "cutoff" after the maxima, indicating a decrease in efficiency, remains unexplained. This paper shows, for gallic acid (GA) and propyl, octyl, and lauryl gallates (PG, OG, and LG, respectively), that at any given volume fraction of emulsifier, the concentrations of antioxidants in the interfacial region of stripped corn oil emulsions and their efficiency order follow PG > GA > OG > LG. These results provide clear evidence that an AO's efficiency correlates with its fraction in the interfacial region. AO distributions were obtained in intact emulsions by using the pseudophase kinetic model to interpret changes in observed rate constants of the AOs with a chemical probe, and their efficiencies were measured by employing the Schaal oven test. The model provides a natural explanation for the maxima with increasing AO hydrophobicity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jf400981x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!