Arachidonic acid (AA) is metabolized by enzymes of the cytochrome P450 (CYP) 4A and CYP4F subfamilies to 20- hydroxyeicosatetraeonic acid (20-HETE), which plays an important role in the cardiovascular system. In the current work, we reviewed the formation of 20-HETE in different species by different CYPs; 20-HETE metabolism by cyclooxygenases (COXs) and different isomerases; and the current available inducers and inhibitors of 20-HETE formation in addition to its agonists and antagonists. Moreover we reviewed the negative role of 20-HETE in cardiac hypertrophy, cardiotoxicity, diabetic cardiomyopathy, and in ischemia/reperfusion (I/R) injury. Lastly, we reviewed the role of 20-HETE in different hypertension models such as the renin/angiotensin II model, Goldblatt model, spontaneously hypertensive rat model, androgen-induced model, slat- and deoxycorticosterone acetate (DOCA)-salt-induced models, and high fat diet model. 20-HETE can affect pro- and anti-hypertensive mechanisms dependent upon where, when, and by which isoform it has been produced. In contrast to hypertension we also reviewed the role of 20-HETE in endotoxin-induced hypotension and the natriuretic effects of 20-HETE. Based on the recent studies, 20-HETE production and/or action might be a therapeutic target to protect against the initiation and progression of cardiovascular diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/1389200211314060007 | DOI Listing |
JDS Commun
January 2025
Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824.
Dairy cows with clinical ketosis (CK) exhibit metabolic changes, including intense adipose tissue (AT) lipolysis and systemic insulin resistance, that increase plasma BHB and free fatty acids (FFA). Cows with CK also have systemic inflammation, predisposing them to inflammatory and infectious diseases. This inflammatory process is modulated in part by oxidized fatty acids (oxylipins) that regulate all aspects of inflammation.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Physiology, Zunyi Medical University, Campus No.1 Road, Xinpu New District, Zunyi, 563006, Guizhou, China.
In the vascular system, angiotensin II (Ang II) mediated vasoconstriction by inducing the production of 20-hydroxyeicosatetraenoic acid (20-HETE). However, the role of 20-HETE in Ang II-induced cardiac dysfunction had yet to be fully elucidated. This study investigated the effects of Ang II on CYP4A expression and 20-HETE production in H9c2 cells using RT-qPCR, Western blot, and ELISA.
View Article and Find Full Text PDFTransl Res
December 2024
Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, Wuhan 430071, China.
Renal ischemia-reperfusion injury (IRI) is a prevalent clinical syndrome, yet its underlying pathogenesis remains largely unknown. Aldehyde dehydrogenase 2 (ALDH2), an enzyme responsible for detoxifying lipid aldehydes, has been suggested to play a protective role against IRI. In our study, we observed that Aldh2 knock-out C57BL/6 mice experienced more severe renal functional impairment following IRI.
View Article and Find Full Text PDFBioorg Med Chem
October 2023
Taisho Pharmaceutical Co., Ltd, 1-403, Yoshino-Cho, Kita-Ku, Saitama, Saitama 331-9530, Japan. Electronic address:
20-Hydroxyeicosatetraenoic acid (20-HETE) is a lipid mediator and one of the major arachidonic acid metabolites whose formation is mainly catalyzed by the enzymes cytochrome P450 (CYP) 4F2 and CYP4A11. Several studies have suggested that 20-HETE is involved in the pathogenesis of renal diseases, including diabetic nephropathy and autosomal dominant polycystic kidney disease, and we previously reported compound 1 as a dual inhibitor of CYP4A11/4F2 with therapeutic potential against renal fibrosis. Subsequent studies revealed that compound 1, the dual CYP4A11/4F2 inhibitor, however, exhibited low selectivity over another CYP4F subtype, CYP4F22, which catalyzes ω-hydroxylation of ultra-long-chain fatty acids (ULCFAs); ULCFAs are important for the formation of acylceramides, which play a role in skin barrier formation.
View Article and Find Full Text PDFHypertension
December 2024
Medical School, Royal Perth Hospital Unit, University of Western Australia, Perth, Australia (A.E.B., S.S., L.J.B., T.A.M.).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!