A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Hyperfine interactions and electron distribution in Fe(II)Fe (I) and Fe (I)Fe (I) models for the active site of the [FeFe] hydrogenases: Mössbauer spectroscopy studies of low-spin Fe(I.). | LitMetric

Mössbauer studies of [{μ-S(CH2C(CH3)2CH2S}(μ-CO)Fe(II)Fe(I)(PMe3)2(CO)3]PF6 (1 OX ), a model complex for the oxidized state of the [FeFe] hydrogenases, and the parent Fe(I)Fe(I) derivative are reported. The paramagnetic 1 OX is part of a series featuring a dimethylpropanedithiolate bridge, introducing steric hindrance with profound impact on the electronic structure of the diiron complex. Well-resolved spectra of 1 OX allow determination of the magnetic hyperfine couplings for the low-spin distal Fe(I) ([Formula: see text]) site, A x,y,z  = [-24 (6), -12 (2), 20 (2)] MHz, and the detection of significant internal fields (approximately 2.3 T) at the low-spin ferrous site, confirmed by density functional theory (DFT) calculations. Mössbauer spectra of 1 OX show nonequivalent sites and no evidence of delocalization up to 200 K. Insight from the experimental hyperfine tensors of the Fe(I) site is used in correlation with DFT to reveal the spatial distribution of metal orbitals. The Fe-Fe bond in [Fe2{μ-S(CH2C(CH3)2CH2S}(PMe3)2(CO)4] (1) involving two [Formula: see text]-type orbitals is crucial in keeping the structure intact in the presence of strain. On oxidation, the distal iron site is not restricted by the Fe-Fe bond, and thus the more stable isomer results from inversion of the square pyramid, rotating the [Formula: see text] orbital of [Formula: see text]. DFT calculations imply that the Mössbauer properties can be traced to this [Formula: see text] orbital. The structure of the magnetic hyperfine coupling tensor, A, of the low-spin Fe(I) in 1 OX is discussed in the context of the known A tensors for the oxidized states of the [FeFe] hydrogenases.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00775-013-1005-5DOI Listing

Publication Analysis

Top Keywords

[formula text]
16
low-spin fei
8
magnetic hyperfine
8
dft calculations
8
fe-fe bond
8
text] orbital
8
site
5
[formula
5
hyperfine
4
hyperfine interactions
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!