The prairie vole is a socially monogamous rodent that is an excellent animal model for studies of the neurobiology of social attachment. Such studies have demonstrated that activation of reward circuitry during social interactions facilitates pair bond formation. Within this circuitry, μ-opioid receptors (MORs) modulate naturally rewarding behavior in an anatomically segregated manner; MORs located throughout the striatum (dorsal striatum, NAc core, and the entire NAc shell) are implicated in general motivational processes, whereas those located specifically within the dorsomedial NAc shell mediate positive hedonics (and are referred to as a "hedonic hotspot"). The purpose of the present study was to determine whether MORs within these distinct subregions differentially mediate pair bond formation. We first used receptor autoradiography to compare MOR binding densities between these regions. MOR binding was significantly higher in the NAc core and dorsomedial NAc shell compared with the ventral NAc shell. We next used partner preference testing to determine whether MORs within these subregions differentially mediate pair bonding. Blockade of MORs using 1 or 3 μg of H-d-Phe-Cys-Tyr-d-Trp-Arg-Thr-Pen-Thr-NH2 within the dorsal striatum decreased mating during the cohabitation period and inhibited partner preference formation. In contrast, blockade of MORs within dorsomedial NAc shell inhibited partner preference formation without effecting mating behavior, whereas other regions were not involved. Thus, MORs within the dorsal striatum mediate partner preference formation via impairment of mating, whereas those in the dorsomedial NAc shell appear to mediate pair bond formation through the positive hedonics associated with mating.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6705037PMC
http://dx.doi.org/10.1523/JNEUROSCI.4123-12.2013DOI Listing

Publication Analysis

Top Keywords

nac shell
24
mediate pair
16
pair bond
16
bond formation
16
dorsomedial nac
16
partner preference
16
dorsal striatum
12
preference formation
12
μ-opioid receptors
8
striatum mediate
8

Similar Publications

Affective processing is important for guiding behavior and its dysfunction can lead to several psychiatric illnesses, including depression and substance use disorders. Conditioned taste aversion (CTA) is used to study learned shifts in affect, and taste reactivity (TR) can effectively track the hedonic properties of appetitive and aversive tastants before and after CTA. While the infralimbic cortex (IL) and its projections to the nucleus accumbens (NAc) shell play a key role in learned negative affect, this role is unique to males.

View Article and Find Full Text PDF

Stapled Arterial Divestment in Surgery for Locally Advanced Pancreatic Cancer.

J Surg Oncol

December 2024

Department of Upper Gastrointestinal Surgery, Royal North Shore Hospital, St Leonards, New South Wales, Australia.

Background: Pancreatic adenocarcinoma has a predisposition to invade the neural tissue surrounding the superior mesenteric artery (SMA). Before the advent of neoadjuvant chemotherapy (NAC), any invasion of this tissue was often considered as unresectable disease. Currently, patients who respond favourably to NAC have potentially resectable disease.

View Article and Find Full Text PDF

Background: Motivated behaviors are executed by refined brain circuits. Early-life adversity (ELA) is a risk for human affective disorders involving dysregulated reward behaviors. In mice, ELA causes anhedonia-like behaviors in males and augmented reward motivation in females, indicating sex-dependent disruption of reward circuit operations.

View Article and Find Full Text PDF

The Europa Imaging System (EIS) consists of a Narrow-Angle Camera (NAC) and a Wide-Angle Camera (WAC) that are designed to work together to address high-priority science objectives regarding Europa's geology, composition, and the nature of its ice shell. EIS accommodates variable geometry and illumination during rapid, low-altitude flybys with both framing and pushbroom imaging capability using rapid-readout, 8-megapixel (4k × 2k) detectors. Color observations are acquired using pushbroom imaging with up to six broadband filters.

View Article and Find Full Text PDF

Background/objectives: Palatability significantly influences food consumption, often leading to overeating and obesity by activating the brain's reward systems. The nucleus accumbens (NAc) plays a central role in this process, modulating reward mechanisms primarily via dopamine through D2-like receptors (D2R, D3R, D4R). While the involvement of D2 receptors in feeding is well-documented, the role of D4 receptors (D4Rs) is less clear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!