The aim of this research was to understand how the brain controls voluntary movement when not directly interacting with the object of interest. In the present study, we examined the role of premotor cortex in this behavior. The goal of this study was to characterize the oscillatory activity within the caudal and rostral subdivisions of dorsal premotor cortex (PMdc and PMdr) with a change from the most basic reaching movement to one that involves a simple dissociation between the actions of the eyes and hand. We were specifically interested in how PMdr and PMdc respond when the eyes and hand are decoupled by moving along different spatial planes. We recorded single-unit activity and local field potentials within PMdr and PMdc from two rhesus macaques during performance of two types of visually guided reaches. During the standard condition, a visually guided reach was performed whereby the visual stimulus guiding the movement was the target of the reach itself. During the nonstandard condition, the visual stimulus provided information about the direction of the required movement but was not the target of the motor output. We observed distinct task-related and topographical differences between PMdr and PMdc. Our results support functional differences between PMdr and PMdc during visually guided reaching. PMdr activity appears more involved in integrating the rule-based aspects of a visually guided reach, whereas PMdc is more involved in the online updating of the decoupled reach. More broadly, our results highlight the necessity of accounting for the nonstandard nature of a motor task when interpreting movement control research data.

Download full-text PDF

Source
http://dx.doi.org/10.1152/jn.00764.2012DOI Listing

Publication Analysis

Top Keywords

pmdr pmdc
16
visually guided
16
premotor cortex
12
eyes hand
8
guided reach
8
visual stimulus
8
movement target
8
differences pmdr
8
pmdc
6
pmdr
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!