Analysis of conformational motions and residue fluctuations for Escherichia coli ribose-binding protein revealed with elastic network models.

Int J Mol Sci

Shandong Provincial Key Laboratory of Functional Macromolecular Biophysics, Dezhou University, 566 University Road West, Dezhou 253023, China.

Published: May 2013

The ribose-binding protein (RBP) is a sugar-binding bacterial periplasmic protein whose function is associated with a large allosteric conformational change from an open to a closed conformation upon binding to ribose. The open (ligand-free) and closed (ligand-bound) forms of RBP have been found. Here we investigate the conformational motions and residue fluctuations of the RBP by analyzing the modes of motion with two coarse-grained elastic network models, the Gaussian Network Model (GNM) and Anisotropic Network Model (ANM). The calculated B-factors in both the calculated models are in good agreement with the experimentally determined B-factors in X-ray crystal structures. The slowest mode analysis by GNM shows that both forms have the same motion hinge axes around residues Ser103, Gln235, Asp264 and the two domains of both structures have similar fluctuation range. The superposition of the first three dominant modes of ANM, consisting of the rotating, bending and twisting motions of the two forms, accounts for large rearrangement of domains from the ligand-free (open) to ligand-bound (closed) conformation and thus constitutes a critical component of the RBP's functions. By analyzing cross-correlations between residue fluctuation and the difference-distance plot, it is revealed that the conformational change can be described as a rigid rotation of the two domains with respect to each other, whereas the internal structure of the two domains remains largely intact. The results directly indicate that the dominant dynamic characteristics of protein structures can be captured from their static native state using coarse-grained models.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3676853PMC
http://dx.doi.org/10.3390/ijms140510552DOI Listing

Publication Analysis

Top Keywords

conformational motions
8
motions residue
8
residue fluctuations
8
ribose-binding protein
8
elastic network
8
network models
8
conformational change
8
closed conformation
8
network model
8
analysis conformational
4

Similar Publications

In this case report, we discuss the critical interdependence of structure and function in demonstrating systolic anterior motion (SAM) of the mitral valve after repeat heart transplantation, where residual apical tissue of the explanted heart remained in place. The resulting conformational changes led to anterior displacement of the mitral valve and persistent SAM.

View Article and Find Full Text PDF

Polar Networks Mediate Ion Conduction of the SARS-CoV-2 Envelope Protein.

J Am Chem Soc

December 2024

Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139, United States.

The SARS-CoV-2 E protein conducts cations across the cell membrane to cause pathogenicity to infected cells. The high-resolution structures of the E transmembrane domain (ETM) in the closed state at neutral pH and in the open state at acidic pH have been determined. However, the ion conduction mechanism remains elusive.

View Article and Find Full Text PDF

Dynamic properties of isotropic DMPC/DHPC bicelles: Insights from solution NMR and MD simulations.

Biochem Biophys Res Commun

December 2024

Graduate School of Chemical Sciences and Engineering, Hokkaido University, N13, W8, Sapporo, 060-8628, Japan; Department of Chemistry, Faculty of Science, Hokkaido University, N8, W5, Sapporo, 060-0810, Japan. Electronic address:

Bicelles, an artificial disk-shaped lipid bilayer, are commonly used for the structural and functional characterization of membrane-bound proteins in an environment similar to that in intracellular membranes. Because the dynamics of the lipids that constitute bicelles exert a significant impact on the structure and function of the inserted proteins, we investigated the mobility of lipid molecules in bicelles composed of DMPC (14:0 PC) and DHPC (06:0 PC) using solution NMR and MD calculations. C R relaxation experiments for the acyl groups demonstrated that increasing bicelle sizes limit the rotational diffusion of acyl chain H-C bonds in DMPC.

View Article and Find Full Text PDF

An intermediate open structure reveals the gating transition of the mechanically activated PIEZO1 channel.

Neuron

December 2024

State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center of Biological Structure, Tsinghua University, Beijing 100084, China; School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China. Electronic address:

PIEZO1 is a mechanically activated cation channel that undergoes force-induced activation and inactivation. However, its distinct structural states remain undefined. Here, we employed an open-prone PIEZO1-S2472E mutant to capture an intermediate open structure.

View Article and Find Full Text PDF

Conformational response of αβ and αβ integrins to force.

Structure

December 2024

Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA; Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, USA; Department of Biochemistry, University of Utah, Salt Lake City, UT, USA; Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT, USA. Electronic address:

As major adhesion receptors, integrins transmit biochemical and mechanical signals across the plasma membrane. These functions are regulated by transitions between bent and extended conformations and modulated by force. To understand how force on integrins mediates cellular mechanosensing, we compared two highly homologous integrins, αβ and αβ.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!