Epigenetic modifications, including those occurring on DNA and on histone proteins, control gene expression by establishing and maintaining different chromatin states. In recent years, it has become apparent that epigenetic modifications do not function alone, but work together in various combinations, and cross-regulate each other in a manner that diversifies their functional states. Arginine methylation is one of the numerous PTMs (post-translational modifications) occurring on histones, catalysed by a family of PRMTs (protein arginine methyltransferases). This modification is involved in the regulation of the epigenome largely by controlling the recruitment of effector molecules to chromatin. Histone arginine methylation associates with both active and repressed chromatin states depending on the residue involved and the configuration of the deposited methyl groups. The present review focuses on the increasing number of cross-talks between histone arginine methylation and other epigenetic modifications, and describe how these cross-talks influence factor binding to regulate transcription. Furthermore, we present models of general cross-talk mechanisms that emerge from the examples of histone arginine methylation and allude to various techniques that help decipher the interplay among epigenetic modifications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1042/BST20130003 | DOI Listing |
Epigenetics
December 2025
Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.
RNA N6-methyladenosine (m6A) plays diverse roles in RNA metabolism and its deregulation contributes to tumor initiation and progression. Clear cell renal cell carcinoma (ccRCC) is characterized by near ubiquitous loss of followed by mutations in epigenetic regulators , , and . Mutations in , a histone H3 lysine 36 trimethylase (H3K36me3), are associated with reduced survival, greater metastatic propensity, and metabolic reprogramming.
View Article and Find Full Text PDFToxicol Ind Health
January 2025
Department of of Toxicology, Faculty of Pharmacy, Istanbul Okan University, Istanbul, Turkey.
Di-2-(ethylhexyl)phthalate (DEHP) is a phthalate derivative used extensively in a wide range of materials, such as medical devices, toys, cosmetics, and personal care products. Many mechanisms, including epigenetics, may be involved in the effects of phthalates on brain development. In this study, Sprague-Dawley male rats were obtained 21-23 days after their birth (post-weaning) and were exposed to DEHP during the prepubertal period with low-dose DEHP (DEHP-L, 30 mg/kg/day) and high-dose DEHP (DEHP-H, 60 mg/kg/day, 37 days) until the end of adolescence (PND 60).
View Article and Find Full Text PDFClin Sci (Lond)
January 2025
Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, U.S.A.
Salt sensitivity of blood pressure (SSBP) is a complex physiological trait characterized by changes in blood pressure in response to dietary salt intake. Aging introduces an additional layer of complexity to the pathophysiology of SSBP, with mitochondrial dysfunction, epigenetic modifications, and alterations in gut microbiota emerging as critical factors. Despite advancements in understanding these mechanisms, the processes driving increased salt sensitivity with age and their differential impacts across sexes remain unclear.
View Article and Find Full Text PDFLife Med
August 2024
Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Changle West Road, Xincheng District, Xi'an, Shaanxi 710032, China.
Nonalcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver condition, characterized by a spectrum that progresses from simple hepatic steatosis to nonalcoholic steatohepatitis, which may eventually lead to cirrhosis and hepatocellular carcinoma. The precise pathogenic mechanisms underlying NAFLD and its related metabolic disturbances remain elusive. Epigenetic modifications, which entail stable transcriptional changes without altering the DNA sequence, are increasingly recognized as pivotal.
View Article and Find Full Text PDFCureus
December 2024
Neurosurgery, Federal Fluminense University, Niterói, BRA.
The coexistence of type 2 diabetes mellitus (T2DM) and chronic kidney disease (CKD) represents a significant global health challenge, contributing to substantial morbidity, mortality, and economic burden. T2DM is the leading cause of CKD, and CKD exacerbates diabetes-related complications, creating a bidirectional relationship driven by oxidative stress, inflammation, and endothelial dysfunction. Diabetic kidney disease (DKD), affecting some individuals with T2DM, accelerates progression to end-stage renal disease (ESRD) and increases cardiovascular mortality.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!