A field test with a one-time emulsified vegetable oil (EVO) injection was conducted to assess the capacity of EVO to sustain uranium bioreduction in a high-permeability gravel layer with groundwater concentrations of (mM) U, 0.0055; Ca, 2.98; NO3(-), 0.11; HCO3(-), 5.07; and SO4(2-), 1.23. Comparison of bromide and EVO migration and distribution indicated that a majority of the injected EVO was retained in the subsurface from the injection wells to 50 m downgradient. Nitrate, uranium, and sulfate were sequentially removed from the groundwater within 1-2 weeks, accompanied by an increase in acetate, Mn, Fe, and methane concentrations. Due to the slow release and degradation of EVO with time, reducing conditions were sustained for approximately one year, and daily U discharge to a creek, located approximately 50 m from the injection wells, decreased by 80% within 100 days. Total U discharge was reduced by 50% over the one-year period. Reduction of U(VI) to U(IV) was confirmed by synchrotron analysis of recovered aquifer solids. Oxidants (e.g., dissolved oxygen, nitrate) flowing in from upgradient appeared to reoxidize and remobilize uranium after the EVO was exhausted as evidenced by a transient increase of U concentration above ambient values. Occasional (e.g., annual) EVO injection into a permeable Ca and bicarbonate-containing aquifer can sustain uranium bioreduction/immobilization and decrease U migration/discharge.

Download full-text PDF

Source
http://dx.doi.org/10.1021/es3033555DOI Listing

Publication Analysis

Top Keywords

emulsified vegetable
8
vegetable oil
8
evo injection
8
sustain uranium
8
injection wells
8
evo
7
uranium
5
situ bioremediation
4
bioremediation uranium
4
uranium emulsified
4

Similar Publications

Improving the prebiotic activity and oxidative stability of carboxymethyl curdlan - quercetin conjugates stabilized Pickering emulsions for the colonic targeting delivery of curcumin.

Food Res Int

February 2025

DongTing Laboratory, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China. Electronic address:

The carboxymethyl curdlan-quercetin conjugate (CMCD-QUE) was synthesized to stabilize curcumin (CUR) -loaded Pickering emulsions. The physicochemical properties, antioxidant activity, and prebiotic activity of CMCD-QUE were investigated. The effects of different concentrations of CMCD-QUE on CUR-loaded emulsions were also explored.

View Article and Find Full Text PDF

Ultrasound assisted complexation of soybean peptide aggregates and soluble soybean polysaccharide: pH optimization, structure characterization, and emulsifying behavior.

Food Res Int

February 2025

Engineering and Technology Center for Grain Processing of Shandong Province, Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Avenue, Tai'an 271018, China. Electronic address:

This study aims to enhance the emulsifying properties of soybean peptide aggregates (SPA) by preparing SPA-soluble soybean polysaccharide (SSPS) composite particles at the assistance of ultrasound technique. The optimal pH for SPA and SSPS complexation was determined by measuring the charge and particle size of the composites. The effects of ultrasound power and duration on the physicochemical properties of the composite particles were assessed through measurements of particle size, zeta potential, contact angle, FTIR, and SEM.

View Article and Find Full Text PDF

Optimization of Fermentation Process of and Evaluation of Acute Toxicity of Protein Extract in Mice.

Foods

December 2024

Chinese-Thai Traditional Chinese Veterinary Medicine and Techniques Cooperation Laboratory, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China.

The seeds of , a high-quality vegetable protein source, encounter application limitations due to their high molecular weight and anti-nutritional factors. This study focused on optimizing the fermentation process by investigating key parameters such as inoculation amount, inoculation ratio, material-to-liquid ratio, fermentation temperature, and fermentation time. Both single-factor experiments and response surface methodology were used to determine the optimal conditions.

View Article and Find Full Text PDF

Background: This study aimed to produce, characterize, and apply a biosurfactant as a bioremediation tool for oil-contaminated coastal environments.

Methods: The biosurfactant was produced in a medium containing 5.0% corn steep liquor and 1.

View Article and Find Full Text PDF

Stable Pickering emulsions of cinnamaldehyde were formulated using tannic acid-assisted cellulose nanofibers and applied for mango preservation.

Int J Biol Macromol

December 2024

College of Food Science, Southwest University, Chongqing 400715, People's Republic of China; Research Center for Fruits and Vegetables Logistics Preservation and Nutritional Quality Control, Southwest University, Chongqing 400715, People's Republic of China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, People's Republic of China. Electronic address:

Recent explorations into cinnamaldehyde (CIN) have identified its potential as a natural preservative, particularly when incorporated into active packaging to enhance the shelf-life of fruits and vegetables. This study explores the use of cellulose nanofiber (CNF)-stabilized Pickering emulsions as a novel delivery system for essential oils, demonstrating broad applicability in food preservation strategies. We employ CNF as Pickering stabilizers to effectively emulsify and encapsulate CIN, investigating the influence of tannic acid (TA) concentrations on the stability of these emulsions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!