Prediction of phase equilibrium and hydration free energy of carboxylic acids by Monte Carlo simulations.

J Phys Chem B

IFP Energies Nouvelles, 1 et 4 avenue de Bois-Préau, 92852 Rueil-Malmaison, France.

Published: June 2013

In this work, a new transferable united-atom force field has been developed to predict phase equilibrium and hydration free energy of carboxylic acids. To take advantage of the transferability of the AUA4 force field, all Lennard-Jones parameters of groups involved in the carboxylic acid chemical function are reused from previous parametrizations of this force field. Only a unique set of partial electrostatic charges is proposed to reproduce the experimental gas phase dipole moment, saturated liquid densities and vapor pressures. Phase equilibrium properties of various pure carboxylic acids (acetic acid, propanoic acid, butanoic acid, pentanoic acid, hexanoic acid) and one diacid (1,5-pentanedioic) are studied through Monte Carlo simulations in the Gibbs ensemble. A good accuracy is obtained for pure compound saturated liquid densities and vapor pressures (average deviation of 2% and 6%, respectively), as well as for critical points. The vaporization enthalpy is, however, poorly predicted for short acids, probably due to a limitation of the force field to correctly describe the significant dimerization in the vapor phase. Pressure-composition diagrams for two binary mixtures (acetic acid + n-butane and propanoic acid + pentanoic acid) are also computed with a good accuracy, showing the transferability of the proposed force field to mixtures. Hydration free energies are calculated for three carboxylic acids using thermodynamic integration. A systematic overestimation of around 10 kJ/mol is observed compared to experimental data. This new force field parametrized only on saturated equilibrium properties appears insufficient to reach an acceptable precision for this property, and only relative hydration free energies between two carboxylic acids can be correctly predicted. This highlights the limitation of the transferability feature of force fields to properties not included in the parametrization database.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp401251wDOI Listing

Publication Analysis

Top Keywords

force field
24
carboxylic acids
20
hydration free
16
phase equilibrium
12
acid
9
equilibrium hydration
8
free energy
8
energy carboxylic
8
monte carlo
8
carlo simulations
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!