In order to identify genes involved in floral transition and development of the orchid species, a full-length APETALA1/FRUITFULL-like (AP1/FUL-like) MADS box cDNA was cloned from Cymbidium faberi (C. faberi) sepals and designated as C. faberi APETALA1-like (CfAP11], JQ031272.1). The deduced amino acid sequence of CfAP11 shared 84% homology with a member of the AP1/FUL-like group of MADS box genes (AY927238.1, Dendrobium thyrsiflorum FUL-like MADS box protein 3 mRNA). Phylogenetic analysis shows that CfAP11 belonged to the AP1/FUL transcription factor subfamily. Bioinformatics analysis shows that the deduced protein had a MADS domain and a relatively conservative K region. The secondary structure of CfAP11 mainly consisted of alpha helices (58.97%), and the three-dimensional structure of the protein was similar to that of homologues in Roza hybrida, Oryza sativa and Narcissus tazetta. Real-time quantitative PCR (qRT-PCR) results reveal low levels of its mRNA in roots, lower levels in leaves during reproductive period than vegetative period, and higher levels in pedicels at full-blossom stage than at bud stage. These results suggest that CfAP11 is involved in floral induction and floral development. Additionally, we observed higher levels of CfAP11 expression in pedicels and ovaries than in other tissues during full-blossom stage, which suggests that CfAP11 may also be involved in fruit formation in certain mechanism.

Download full-text PDF

Source

Publication Analysis

Top Keywords

mads box
12
cymbidium faberi
8
involved floral
8
higher levels
8
full-blossom stage
8
cfap11 involved
8
cfap11
6
molecular cloning
4
cloning spatiotemporal
4
spatiotemporal expression
4

Similar Publications

Tartary buckwheat is a nutrient-rich pseudo-cereal whose starch contents, including amylose and amylopectin contents, and their properties hold significant importance for enhancing yield and quality. The granule-bound starch synthase (GBSS) is a key enzyme responsible for the synthesis of amylose, directly determining the amylose content and amylose-to-amylopectin ratio in crops. Although one has already been cloned, the genes at the genome-wide level have not yet been fully assessed and thoroughly analyzed in Tartary buckwheat.

View Article and Find Full Text PDF

Transcriptomics and Plant Hormone Analysis Reveal the Mechanism of Branching Angle Formation in Tea Plants ().

Int J Mol Sci

January 2025

National Centre for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China.

The branching angle of tea plants is a key factor in determining their branching structure, which significantly affects yield, suitability for mechanical harvesting, and overall plant architecture. However, the mechanisms underlying branching angle formation in tea plants remain unclear. In this study, we explored the mechanism of branching angle formation in tea plants by analysing the transcriptome and plant hormone levels of tea plant cultivars with different branching angles.

View Article and Find Full Text PDF

The MADS-Box Transcription Factor EjAGL18 Negatively Regulates Malic Acid Content in Loquat by Repressing .

Int J Mol Sci

January 2025

Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing 400715, China.

Malic acid is the major organic acid in loquat fruit, contributing to the sourness of fruit and affecting fruit flavor. However, the transcriptional regulation of malic acid in loquat is not well understood. Here, we discovered a MADS-box transcription factor (TF), EjAGL18, that regulated malic acid accumulation in loquat.

View Article and Find Full Text PDF

Research Progress on Gene Regulation of Plant Floral Organogenesis.

Genes (Basel)

January 2025

National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.

Flowers, serving as the reproductive structures of angiosperms, perform an integral role in plant biology and are fundamental to understanding plant evolution and taxonomy. The growth and organogenesis of flowers are driven by numerous factors, such as external environmental conditions and internal physiological processes, resulting in diverse traits across species or even within the same species. Among these factors, genes play a central role, governing the entire developmental process.

View Article and Find Full Text PDF

Lifitegrast in Treatment of Dry Eye Disease-A Practical, Narrative Expert Review.

J Ophthalmol

January 2025

Department of Ophthalmology, Oslo University Hospital, P.O. Box 4950, Nydalen, Oslo 0424, Norway.

Dry eye disease (DED) is a multifactorial disorder affecting millions worldwide. Inflammation plays a central role in DED. The aim of this review is to critically evaluate the literature concerning the efficacy and safety of lifitegrast, a small molecule immunomodulator that blocks the action of lymphocyte function-associated antigen-1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!