Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Trypanosomes cause a variety of tropical diseases that affect the livelihood of individuals worldwide. The currently used pharmaceutical treatments rely on chemotherapy. However, many of these drugs are very expensive, and highly toxic. In addition, parasite resistance to several of the therapeutic drugs used is increasing. Therefore, there is a growing need for new control measures for many of these diseases. One new approach is the use of antimicrobial peptides (AMPs) to disease control, since these peptides can be used as potential anti-parasite effector molecules. This review summarizes and discusses the parasiticidal properties of AMPs for treating trypanosome infections, highlighting their mechanisms of action and current status in development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.12816/0006377 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!