Epigenetic inactivation of chromatin plays an important role in determining cell phenotype in both normal and cancer cells, but our knowledge is still incomplete with respect to any potential monoallelic nature of the phenomenon. We have genotyped DNA isolated from chromatin of two colorectal cancer-derived lines and a culture of normal human intestinal epithelial cells (HIEC), which was immunoprecipitated with antibodies to acetylated vs. methylated histone H3K9, and presented the data as B allele frequency differences over multiple single-nucleotide polymorphism (SNP) moving window averages. [B allele is an arbitrary term defined as one of the two alleles at any given SNP, named A and B]. Three different validation tests confirmed that peaks exhibiting differences represented monoallelic domains. These complementary tests confirmed the following: 1) genes in the regions of high B allele frequency difference were expressed monoallelically; 2) in normal cells all five imprinting control regions which carried heterozygous SNPs were characterized by B allele difference peaks; and 3) the haplotypes in the B allele difference peaks were faithfully maintained in the chromatin immunoprecipitated with the respective antibodies. In both samples most of the monoallelic domains were found at the boundaries between regions of open and closed chromatin. With respect to the cancer line, this supports the established concept of conformation spreading, but the results from the normal cells were unexpected. Since these cells were polyclonal, the monoallelic structures were probably not determined by random choice as occurs in X-inactivation, so we propose that epigenetic inactivation in some domains may be heritable and polymorphic in normal human cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3655995PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0063190PLOS

Publication Analysis

Top Keywords

normal cells
12
epigenetic inactivation
8
normal human
8
allele frequency
8
tests confirmed
8
monoallelic domains
8
allele difference
8
difference peaks
8
cells
7
normal
6

Similar Publications

This study utilizes single-cell RNA sequencing data to reveal the transcriptomic characteristics of breast cancer and normal epithelial cells. Nine significant cell populations were identified through stringent quality control and batch effect correction. Further classification of breast cancer epithelial cells based on the PAM50 method and clinical subtypes highlighted significant heterogeneity between triple-negative breast cancer (TNBC) and non-triple-negative breast cancer (NTNBC).

View Article and Find Full Text PDF

The hidden weavers: A review of DNA/RNA R-loops in stem cell biology and therapeutic potential.

Int J Biol Macromol

January 2025

Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, Guangdong, China. Electronic address:

R-loops, three-stranded nucleic acid structures composed of RNA-DNA hybrids, are increasingly recognized as central regulators of genomic stability and transcription. These structures play critical roles across various cellular processes, including DNA replication, repair, and gene regulation, with significant implications for stem cell biology and disease pathogenesis. This review comprehensively explores the molecular underpinnings of R-loop formation, emphasizing the dual nature of R-loops in both facilitating normal cellular functions and contributing to genomic instability.

View Article and Find Full Text PDF

Many atopic dermatitis (AD) patients have suboptimal responses to Dupilumab therapy. This study identified key genes linked to this resistance using multi-omics approaches to benefit more patients. We selected a prospective cohort of 54 CE treated with Dupilumab from the GEO database.

View Article and Find Full Text PDF

Yes-associated protein (YAP), a focal point of current biological research, is involved in regulating various life processes. In this report, live-cell fluorescence resonance energy transfer (FRET) imaging was employed to unravel the YAP complexes in MCF-7 cells. Fluorescence imaging of living cells co-expressing CFP (cyan fluorescent protein)-YAP and YFP (yellow fluorescent protein)-LATS1 (large tumor suppressor 1) plasmids revealed that YAP promoted LATS1 oligomerization around mitochondria.

View Article and Find Full Text PDF

The unexplained association between infection and autoimmune disease is strongest for hepatitis C virus-induced cryoglobulinemic vasculitis (HCV-cryovas). To analyze its origins, we traced the evolution of pathogenic rheumatoid factor (RF) autoantibodies in four HCV-cryovas patients by deep single-cell multi-omic analysis, revealing three sources of B cell somatic mutation converged to drive the accumulation of a large disease-causing clone. A method for quantifying low-affinity binding revealed recurring antibody variable domain combinations created by V(D)J recombination that bound self-immunoglobulin G (IgG) but not viral E2 antigen.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!