Evidence for late resolution of the aux codon box in evolution.

J Biol Chem

Department of Chemistry, Wake Forest University, Winston-Salem, North Carolina 27109-7486, USA.

Published: July 2013

Recognition strategies for tRNA aminoacylation are ancient and highly conserved, having been selected very early in the evolution of the genetic code. In most cases, the trinucleotide anticodons of tRNA are important identity determinants for aminoacylation by cognate aminoacyl-tRNA synthetases. However, a degree of ambiguity exists in the recognition of certain tRNA(Ile) isoacceptors that are initially transcribed with the methionine-specifying CAU anticodon. In most organisms, the C34 wobble position in these tRNA(Ile) precursors is rapidly modified to lysidine to prevent recognition by methionyl-tRNA synthetase (MRS) and production of a chimeric Met-tRNA(Ile) that would compromise translational fidelity. In certain bacteria, however, lysidine modification is not required for MRS rejection, indicating that this recognition strategy is not universally conserved and may be relatively recent. To explore the actual distribution of lysidine-dependent tRNA(Ile) rejection by MRS, we have investigated the ability of bacterial MRSs from different clades to differentiate cognate tRNACAU(Met) from near-cognate tRNACAU(Ile). Discrimination abilities vary greatly and appear unrelated to phylogenetic or structural features of the enzymes or sequence determinants of the tRNA. Our data indicate that tRNA(Ile) identity elements were established late and independently in different bacterial groups. We propose that the observed variation in MRS discrimination ability reflects differences in the evolution of genetic code machineries of emerging bacterial clades.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3707663PMC
http://dx.doi.org/10.1074/jbc.M112.449249DOI Listing

Publication Analysis

Top Keywords

evolution genetic
8
genetic code
8
evidence late
4
late resolution
4
resolution aux
4
aux codon
4
codon box
4
box evolution
4
recognition
4
evolution recognition
4

Similar Publications

Animals have evolved numerous mechanisms to perceive and interact with the environment that can be translated into different sensory modalities. However, the genomic and phenotypic features that support sensory functions remain enigmatic for many invertebrates, such as bivalves, an ecologically and economically important taxonomic group. No repertoire of sensory genes has been characterized in bivalves, representing a significant knowledge gap in molluscan sensory biology.

View Article and Find Full Text PDF

Focusing on the Yashkun population of Gilgit-Baltistan, an administrative territory in northern Pakistan, our study investigated mtDNA haplotypes as indicators of ancient gene flow and genetic diversity. Genomic DNA was extracted and evaluated for quality using agarose gel electrophoresis. The complete control region of mtDNA (nt 16024-576) was amplified via PCR, and sequencing was performed using the Big Dye Terminator Kit on an Applied Biosystems Genetic Analyzer.

View Article and Find Full Text PDF

A recent study proposed a new genetic lineage of leatherback turtles (Dermochelys coriacea) based on genetic analysis, environmental history, and local ecological knowledge (LEK), suggesting the existence of two possible species or subspecies on the beaches of Oaxaca, diverging ~ 13.5 Mya. However, this hypothesis may be influenced by nuclear mitochondrial DNA segments (NUMTs), which could have been misamplified as true mtDNA.

View Article and Find Full Text PDF

The mitochondrial whole genome of Phellinus igniarius was sequenced with the objective of examining the evolutionary relationships amongst related species. The entire mitochondrial genome was assembled using Illumina sequencing technology. The structural annotation and bioinformatics analysis were performed.

View Article and Find Full Text PDF

We evaluate the evidence of cryptic speciation in Larimus breviceps, a species widely distributed in the western South Atlantic, from the Greater Antilles to Santa Catarina in Brazil. Mitochondrial (COI, Cyt b, and Control Region) and nuclear (IGF1 and Tmo-4C4) sequences were obtained from populations in the western South Atlantic. The analysis revealed two genetically distinct, sympatric lineages with no gene flow, with L.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!