Transcriptional/translational regulation of mammalian spermatogenic stem cells.

Adv Exp Med Biol

School of Molecular Biosciences and the Centre for Reproductive Biology, Washington State University, Pullman, WA 99164-7520, USA.

Published: September 2013

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-94-007-6621-1_7DOI Listing

Publication Analysis

Top Keywords

transcriptional/translational regulation
4
regulation mammalian
4
mammalian spermatogenic
4
spermatogenic stem
4
stem cells
4
transcriptional/translational
1
mammalian
1
spermatogenic
1
stem
1
cells
1

Similar Publications

The epidermal growth factor receptor (EGFR) regulates gene expression through two primary mechanisms: as a growth factor in the nucleus, where it translocates upon binding its ligand, or via its intrinsic tyrosine kinase activity in the cytosol, where it modulates key signaling pathways such as RAS/MYC, PI3K, PLCγ, and STAT3. During tumorigenesis, these pathways become deregulated, leading to uncontrolled proliferation, enhanced migratory and metastatic capabilities, evasion of programmed cell death, and resistance to chemotherapy or radiotherapy. The and oncogenes are pivotal in tumorigenesis, driving processes such as resistance to apoptosis, replicative immortality, cellular invasion and metastasis, and metabolic reprogramming.

View Article and Find Full Text PDF

Hypoxia-inducible factors (HIFs) are essential transcription factors that orchestrate cellular responses to oxygen deprivation. HIF-1α, as an unstable subunit of HIF-1, is usually hydroxylated by prolyl hydroxylase domain enzymes under normoxic conditions, leading to ubiquitination and proteasomal degradation, thereby keeping low levels. Instead of hypoxia, sometimes even in normoxia, HIF-1α translocates into the nucleus, dimerizes with HIF-1β to generate HIF-1, and then activates genes involved in adaptive responses such as angiogenesis, metabolic reprogramming, and cellular survival, which presents new challenges and insights into its role in cellular processes.

View Article and Find Full Text PDF

The abundance and behaviour of all hematopoietic components display daily oscillations, supporting the involvement of circadian clock mechanisms. The daily variations of immune cell functions, such as trafficking between blood and tissues, differentiation, proliferation, and effector capabilities are regulated by complex intrinsic (cell-based) and extrinsic (neuro-hormonal, organism-based) mechanisms. While the role of the transcriptional/translational molecular machinery, driven by a set of well-conserved genes (Clock genes), in nucleated immune cells is increasingly recognized and understood, the presence of non-transcriptional mechanisms remains almost entirely unexplored.

View Article and Find Full Text PDF

Competing endogenous RNAs network and therapeutic implications: New horizons in disease research.

Biochim Biophys Acta Gene Regul Mech

December 2024

Biochemistry Department, Faculty of Pharmacy, Tanta University, 31527, Egypt. Electronic address:

Different diseases may arise from the dysregulation of non-coding RNAs (ncRNAs), which regulation is necessary for maintaining cellular homeostasis. ncRNAs are regulated by transcriptional, post-transcriptional, translational and post-translational processes. Post-transcriptional regulation of gene expression is carried out by microRNAs (miRNAs), a class of small ncRNA molecules, which can identify their target sites by a brief nucleotide sequence, known as the miRNA response element (MRE), present on the miRNA seed sequence and the target transcript.

View Article and Find Full Text PDF

TSG101 depletion dysregulates mitochondria and PML NBs, triggering MAD2-overexpressing interphase cell death (MOID) through AIFM1-PML-DAXX pathway.

Cell Death Dis

November 2024

National Resource Center for Mutant Mice, MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Medical School of Nanjing University, Nanjing, 210061, China.

Article Synopsis
  • * The process of MOID is influenced by the release of mitochondrial AIFM1 mediated by proteins PML and DAXX, indicating a complex interplay between mitochondrial function and cell survival mechanisms.
  • * Both MAD2 and TSG101 interact at PML nuclear bodies during interphase, and specific phosphorylation states of TSG101 are essential for this localization, emphasizing a vital regulatory pathway in controlling cell death and survival in cancer contexts.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!