Caspase-3 is involved in IFN-γ- and TNF-α-mediated MIN6 cells apoptosis via NF-κB/Bcl-2 pathway.

Cell Biochem Biophys

School of Pharmacy and Life Sciences, University of South China, Hengyang, 421001, People's Republic of China.

Published: July 2014

TNF-α and IFN-γ are the major pro-inflammatory cytokines in the β-cell destruction. However, the underlying mechanism remains unclear. The present study used a murine insulinoma cell line MIN6 for further investigation of the effect of Caspase-3 on the cytokines-induced pancreatic β-cell apoptosis and analyzed the mechanisms involved in the activation of Caspase-3. It was showed that the combination of IFN-γ and TNF-α significantly reduced the viability of MIN6 cells and the observed cells growth inhibition was due to cell apoptosis as judged by the morphological changes under a confocal laser scanning microscopy and FACS assay of Annexin-V/7-AAD double staining. Accompanying with NF-κB activation and Bcl-2 downregulation, both the cleaved Caspase-3 and PARP, a known substrate of Caspase-3 in vivo, were observed at 24 and 12 h, respectively, after cells exposure to IFN-γ and TNF-α treatment. Pretreatment of Caspase-3 inhibitors remarkably attenuated IFN-γ- and TNF-α-induced cells apoptosis. Inhibition of NF-κB activation led to the increase in Bcl-2 expression, a significant attenuation in Caspase-3 activity, and an obvious amelioration in cells viability in IFN-γ- and TNF-α-treated MIN6 cells. Taken together, our results indicate that Caspase-3 is critical for the induction of MIN6 cells apoptosis and it's activation is further confirmed to be related to the NF-κB-mediated Bcl-2 downregulation, which may be the underlying mechanism of IFN-γ- and TNF-α-mediated MIN6 cells apoptosis.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12013-013-9642-4DOI Listing

Publication Analysis

Top Keywords

min6 cells
20
cells apoptosis
16
cells
9
caspase-3
8
ifn-γ- tnf-α-mediated
8
tnf-α-mediated min6
8
underlying mechanism
8
ifn-γ tnf-α
8
observed cells
8
nf-κb activation
8

Similar Publications

Dexmedetomidine suppresses glucose-stimulated insulin secretion in pancreatic β-cells.

FEBS Open Bio

December 2024

Department of Cell Physiology, Institute of Biomedical Science, Kansai Medical University, Hirakata, Osaka, Japan.

Proper glycemic control is crucial for patient management in critical care, including perioperative care, and can influence patient prognosis. Blood glucose concentration determines insulin secretion and sensitivity and affects the intricate balance between the glucose metabolism. Human and other animal studies have demonstrated that perioperative drugs, including volatile anesthetics and intravenous anesthetics, affect glucose-stimulated insulin secretion (GSIS).

View Article and Find Full Text PDF

Aims/hypothesis: The key pancreatic beta cell transcription factor v-maf musculoaponeurotic fibrosarcoma oncogene homologue A (MafA) is critical for the maintenance of mature beta cell function and phenotype. The expression levels and/or activities of MafA are reduced when beta cells are chronically exposed to diabetogenic stress, such as hyperglycaemia (i.e.

View Article and Find Full Text PDF

Glucocorticoids reduce Slc2a2 (GLUT2) gene expression through HNF1 in pancreatic β-cells.

J Mol Endocrinol

December 2024

K Kataoka, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan.

Glucose transporter type 2 (GLUT2), encoded by the Slc2a2 gene, is essential for glucose-stimulated insulin secretion (GSIS) in pancreatic islet β-cells, and low expression of GLUT2 is associated with β-cell dysfunction during the progression of type 2 diabetes in humans and animal models. Glucocorticoids are stress hormones that regulate inflammation and metabolism through glucocorticoid receptor (GR), a member of the nuclear receptor superfamily, and synthetic glucocorticoids are widely used for the treatment of inflammatory disorders. Prolonged exposure to glucocorticoids induces β-cell dysfunction and diabetes, but the effects of Slc2a2 gene repression in β-cells, if any, and the mechanisms involved, remains unclear.

View Article and Find Full Text PDF

Pancreatic β cell interleukin-22 receptor subunit alpha 1 deficiency impairs β cell function in type 2 diabetes via cytochrome b5 reductase 3.

Cell Rep

December 2024

Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China; Institute for Metabolic Disease, Fengxian Central Hospital Affiliated to Southern Medical University, Shanghai 201499, China. Electronic address:

Impaired β cell function is a hallmark of type 2 diabetes (T2D), but the underlying cellular signaling machineries that regulate β cell function remain unknown. Here, we identify that the interleukin-22 receptor subunit alpha 1 (IL-22RA1), known as a co-receptor for IL-22, is downregulated in human and mouse T2D β cells. Mice with β cell Il22ra1 knockout (Il22ra1βKO) exhibit defective insulin secretion and impaired glucose tolerance after being fed a high-fat diet (HFD) or an HFD/low dose of streptozotocin (STZ).

View Article and Find Full Text PDF

Nickel Sulfate-Induced GSIS Injury in MIN6 Cells by Activating the JNK Pathway Through Oxidative Stress.

Biol Trace Elem Res

December 2024

Endocrine and Metabolism Department, Lanzhou University Second Hospital, Chengguan District, No. 82, CuyingmenLanzhou, 730000, Gansu, China.

Nickel has an impact on human health, especially in the context of the new energy industries. Nickel's influence on glycemia remains controversial, and the effects and mechanisms of nickel on islet function still need further exploration. MIN6 cells were treated with different concentrations of nickel sulfate (NiSO) (0, 75, 150, and 300 µg/mL) for different durations (0, 12, 24, and 48 h).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!