Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objectives: A validated numerical model for stress/strain predictions is essential in understanding the biomechanical behavior of implant-supported dental prostheses. The digital image correlation (DIC) method for full-field strain measurement was compared with finite element analysis (FEA) in assessing bone strain induced by implants.
Methods: An epoxy resin model simulating the lower arch was made for the experimental test with acrylic resin replicas of the first premolar and second molar and threaded implants replacing the second premolar and first molar. Splinted (G1/G3) and non-splinted (G2/G4) metal-ceramic screw-retained crowns were fabricated and loaded with (G1/G2) or without (G3/G4) the second molar that provided proximal contact. A single-camera, two-dimensional DIC system was used to record deformation of the resin model surface under a load of 250N. Three-dimensional finite element (FE) models were constructed for the physical models using computer-aided design (CAD) software. Surface strains were used for comparison between the two methods, while internal strains at the implant/resin block interface were calculated using FEA.
Results: Both methods found similar strain distributions over the simulant bone block surface, which indicated possible benefits of having splinted crowns and proximal contact in reducing bone strains. Internal strains predicted by FEA at the implant-resin interface were 8 times higher than those on the surface of the model, and they confirmed the results deduced from the surface strains. FEA gave higher strain values than experiments, probably due to incorrect material properties being used.
Significance: DIC is a useful tool for validating FE models used for the biomechanical analysis of dental prosthesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.dental.2013.04.010 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!