The present study aimed to develop novel solid dispersion (SD) of tranilast (TL) using amphiphilic block copolymer, poly[MPC-co-BMA] (pMB), to improve the dissolution and pharmacokinetic behavior of TL. pMB-based SD of TL (pMB-SD/TL) with drug loading of 50% (w/w) was prepared by wet-mill technology, and the physicochemical properties were characterized in terms of morphology, crystallinity, dissolution, and hygroscopicity. Powder X-ray diffraction and polarized light microscopic experiments demonstrated high crystallinity of TL in pMB-SD/TL. The pMB-SD/TL exhibited immediate micellization when introduced to aqueous media, forming fine droplets with a mean diameter of ca. 122 nm. There was marked improvement in the dissolution behavior for the pMB-SD/TL even under acidic conditions, although the supersaturated TL concentration gradually decreased. NMR analyses demonstrated interaction between TL and pMB, as evidenced by the chemical shift drifting and line broadening. Pharmacokinetic behaviors of orally dosed TL formulations were evaluated in rats using UPLC/ESI-MS. After oral administration of pMB-SD/TL (10mg TL/kg) in rats, enhanced TL exposure was observed with increases of Cmax and AUC by 125- and 52-fold, respectively, compared with those of crystalline TL. From these findings, pMB-based SD formulation approach might be an efficacious approach for enhancing the therapeutic potential of TL.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijpharm.2013.05.022 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
Crystalline organic semiconductors, recognized for their highly ordered structures and high carrier mobility, have emerged as a focal point in the field of high-performance optoelectronic devices. Nevertheless, the intrinsic unipolar properties, characterized by imbalanced hole and electron transport capabilities, have continuously represented a significant challenge in the advancement of high-performance crystalline thin-film organic light-emitting diodes (C-OLEDs). Here, a bipolar solid-solution thin film with a maintained crystal structure has been fabricated using 2-(4-(9H-carbazol-9-yl)phenyl)-1(3,5-difluorophenyl)-1H-phenanthro [9,10-d]imidazole (2FPPICz) and 4-(1-(3,5-difluorophenyl)-1H-imidazo[4,5-][1,10]phenanthrolin-2-yl)-N,N-diphenylaniline (2Fn) via a weak epitaxial growth (WEG) process, exhibiting nearly equivalent hole and electron mobilities (10-10 cm V s).
View Article and Find Full Text PDFRev Sci Instrum
January 2025
College of Electrical Engineering and Control Science, Nanjing Tech University, Nanjing 211816, Jiangsu, China.
Nanosecond pulse power has many driving advantages in the dielectric barrier discharge (DBD) application field, including better discharge effect, higher discharge efficiency, and lower electrode temperature. A high-voltage pulse voltage power supply (HV-PVPS) with a multi-turn ratio linear pulse transformer (PT) based on Marx circuit and PT topologies are suitable for most DBD plasma applications with fewer expansion modules, lower cost, smaller volume, and higher reliability comparing with the all-solid-state Marx nanosecond pulse power supply. However, during the process of DBD driven by an HV-PVPS based on Marx and PT topologies, the PT is prone to magnetic core saturation, which limits the application for DBD.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, China.
Chromophores incorporated into rigid polymer matrices may exhibit novel photophysical properties distinct from those in liquid solutions. In this work, we explored the decay path of the second ππ* state (2ππ*) of riboflavin in poly(vinyl alcohol) (PVA) solutions and films with various acidities. Highly efficient internal conversion from 2ππ* to the lowest ππ* state (1ππ*) induced by slight in-plane motion is demonstrated in all PVA solutions and films, irrespective of environmental acidity and rigidification.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Cardiology, The First People's Hospital of Wenling, Wenling Hospital of Wenzhou Medical University, Wenling, Zhejiang, 317500, China.
Immobilizing enzymes onto solid supports having enhanced catalytic activity and resistance to harsh external conditions is considered as a promising and critical method of broadening enzymatic applications in biosensing, biocatalysis, and biomedical devices; however, it is considerably hampered by limited strategies. Here, a core-shell strategy involving a soft-core hexahistidine metal assembly (HmA) is innovatively developed and characterized with encapsulated enzymes (catalase (CAT), horseradish peroxidase, glucose oxidase (GOx), and cascade enzymes (CAT+GOx)) and hard porous shells (zeolitic imidazolate framework (ZIF), ZIF-8, ZIF-67, ZIF-90, calcium carbonate, and hydroxyapatite). The enzyme-friendly environment provided by the embedded HmA proves beneficial for enhanced catalytic activity, which is particularly effective in preserving fragile enzymes that will have been deactivated without the HmA core during the mineralization of porous shells.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka, 577-8502, Japan.
Circularly polarized luminescence (CPL) and mechanochromic luminescence (MCL) have independently made substantial progress in recent years. However, the exploration of MCL in solid-state CPL materials, which holds practical significance, is still in its infancy. Herein, we report the MCL properties of readily accessible chiral pyrenylprolinamides bearing tert-butoxycarbonyl (Boc) or 2,2,2-trichloroethoxycarbonyl (Troc) groups.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!