To determine the HLA-DR4 subtypes associated with rheumatoid arthritis (RA), we performed amplification of DR4 DRB1 genes by the polymerase chain reaction and dot-blots with oligonucleotide probes. In 52 HLA-DR4+ RA patients, Dw4 was the predominant subtype. This subtype was found in 45 of 52 patients (86.5%) compared with 33 of 59 DR4+ controls (55.9%; P less than 0.001). In the whole population, Dw4 also gave the highest relative risk for RA (RR = 5.31). Relative risk was also associated with DR1.1, the common white DR1 (Dw1) type, which has a third hypervariable region amino acid sequence similar to some forms of DR4 and has glycine at position 86. Variants of DR1 (DR1.2) or DR4 (Dw13.1, Dw14.1) with valine at position 86 appeared less able to confer risk for RA. Substitution of residues in the third hypervariable region of the first domain of DRB1 appeared to correlate with relative risk for RA. Among subjects having 0-1 amino acid substitutions, RA developed in 53%, whereas in subjects with 2-4 amino acid changes, RA was present in only 17.4% (P less than 0.00001). DQw7 (formerly DQw3.1) was slightly increased in DR4+ RA patients compared with controls, but a striking excess of Dw4,DQw7 homozygous patients was observed. The results suggest that DQw7 may have an additional effect, possibly with a recessive mechanism, since it was observed only in DR4 homozygous patients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/art.1780330704 | DOI Listing |
Viruses
December 2024
Key Laboratory of Veterinary Biological Engineering and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
The feline panleukopenia virus (FPV) is a highly contagious virus that affects cats worldwide, characterized by leukopenia, high temperature and diarrhea. Recently, the continuous prevalence and variation of FPV have attracted widespread concern. The aim of this study was to investigate the isolation, genetic evolution, molecular characterization and epidemiological analysis of FPV strains among cats and dogs in China from 2019 to 2024.
View Article and Find Full Text PDFViruses
December 2024
Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany.
Recently, we demonstrated that the oncolytic Coxsackievirus B3 (CVB3) strain PD-H can be efficiently adapted to resistant colorectal cancer cells through dose-dependent passaging in colorectal cancer cells. However, the method is time-consuming, which limits its clinical applicability. Here, we investigated whether the manufacturing time of the adapted virus can be reduced by replacing the dose-based passaging with volume-based passaging.
View Article and Find Full Text PDFViruses
December 2024
Gilead Sciences, Inc., Foster City, CA 94404, USA.
Ebola virus (EBOV) causes severe disease in humans, with mortality as high as 90%. The small-molecule antiviral drug remdesivir (RDV) has demonstrated a survival benefit in EBOV-exposed rhesus macaques. Here, we characterize the efficacy of multiple intravenous RDV dosing regimens on survival of rhesus macaques 42 days after intramuscular EBOV exposure.
View Article and Find Full Text PDFViruses
December 2024
Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung 41354, Taiwan.
This study investigated a library of known and novel glycyrrhizic acid (GL) conjugates with amino acids and dipeptide esters, as inhibitors of the DENV NS2B-NS3 protease. We utilized docking algorithms to evaluate the interactions of these GL derivatives with key residues (His51, Asp75, Ser135, and Gly153) within 10 Å of the DENV-2 NS2B-NS3 protease binding pocket (PDB ID: 2FOM). It was found that compounds and exhibited unique binding patterns, forming hydrogen bonds with Asp75, Tyr150, and Gly153.
View Article and Find Full Text PDFViruses
December 2024
Department of Biological Sciences, University of Toledo, 2801 West Bancroft Street, Toledo, OH 43606, USA.
During virus infection, the activation of the antiviral endoribonuclease, ribonuclease L (RNase L), by a unique ligand 2'-5'-oilgoadenylate (2-5A) causes the cleavage of single-stranded viral and cellular RNA targets, restricting protein synthesis, activating stress response pathways, and promoting cell death to establish broad antiviral effects. The immunostimulatory dsRNA cleavage products of RNase L activity (RL RNAs) recruit diverse dsRNA sensors to activate signaling pathways to amplify interferon (IFN) production and activate inflammasome, but the sensors that promote cell death are not known. In this study, we found that DEAH-box polypeptide 15 (DHX15) and retinoic acid-inducible gene I (Rig-I) are essential for apoptosis induced by RL RNAs and require mitochondrial antiviral signaling (MAVS), c-Jun amino terminal kinase (JNK), and p38 mitogen-activated protein kinase (p38 MAPK) for caspase-3-mediated intrinsic apoptosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!