Surface hydrophilic modification of polyethersulfone membranes by surface-initiated ATRP with enhanced blood compatibility.

Colloids Surf B Biointerfaces

College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China.

Published: October 2013

Surface-initiated atom transfer radical polymerization (SI-ATRP) was used to tailor the functionality of polyethersulfone (PES) membranes. A two-step method including nitration reaction and amination reaction was used to synthesize aminated polyethersulfone (PES-NH2) for the preparation of PES/PES-NH2 membranes. Covalently tethered hydrophilic polymer brushes of poly(N-vinylpyrrolidone) (PVP) were prepared via SI-ATRP at low temperature in an aqueous solvent. Attenuated total reflection-Fourier transform infrared (ATR-FTIR), scanning electron microscopy coupled with energy dispersive spectroscopy (SEM-EDS), and water contact angle were used to characterize the modified membranes surfaces. The PVP-grafted PES membranes showed lower protein adsorption and suppressed platelet adhesion compared with the pristine PES membrane. Moreover, the activated partial thromboplastin time (APTT) for the PVP-grafted PES membranes was increased. These results indicated that the surface hydrophilic modification by grafting PVP brushes provided practical application for the PES membranes with good blood compatibility.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.colsurfb.2013.04.034DOI Listing

Publication Analysis

Top Keywords

pes membranes
16
surface hydrophilic
8
hydrophilic modification
8
blood compatibility
8
pvp-grafted pes
8
membranes
7
pes
5
modification polyethersulfone
4
polyethersulfone membranes
4
membranes surface-initiated
4

Similar Publications

This study presents the fabrication and characterization of mixed matrix membranes (MMMs) incorporating green-synthesized silver nanoparticles (AgNPs) using Hibiscus Rosa sinensis extract within a polyethersulfone (PES) matrix for nanofiltration (NF) application. The membranes were evaluated for their pure water permeability, salt rejection, dye removal, and antifouling performance. Results showed that the membrane with 0.

View Article and Find Full Text PDF

This study focuses on the fabrication and characterisation of single-walled carbon nanotube (SWCNT) buckypapers and polyethersulfone (PES) flat-sheet membranes using Cyrene, aiming toevaluate its efficacy as a green solvent for these applications. Pristine SWCNTs were dispersed inCyrene without surfactants and compared to N-Methyl-2-pyrrolidone (NMP) dispersions. Buckypapers were fabricated from these dispersions and characterised using Scanning ElectronMicroscopy (SEM), Atomic Force Microscopy (AFM), and infrared spectroscopy.

View Article and Find Full Text PDF

Atypical Variants of Spinal Dysraphism: A Case Series.

J West Afr Coll Surg

August 2024

Department of Radiology, University College Hospital and College of Medicine, University of Ibadan, Ibadan, Nigeria.

The aim of this study is to present and discuss atypical instances of spina bifida (SB) within a Nigerian paediatric cohort, highlighting their distinctive clinicoradiological features. Additionally, a brief literature review is provided to contextualise these congenital anomalies. This series comprises eight rare cases of SB managed in a Nigerian neurosurgical facility.

View Article and Find Full Text PDF

Cerium oxide NPs (-CeO), with notable performance in various biological tests like redox activity, free radical scavenging, and biofilm inhibition, emerge as significant candidates to address issues in related areas. In this research, copper-decorated -CeO (Cu@-CeO) were first synthesized and then characterized using advanced techniques such as SEM-EDX, XRD, XPS, BET, and ICP-OES. The biochemical properties of the obtained Cu@-CeO nanostructure and its performance in polyethersulfone (PES) membranes were thoroughly investigated in this research study.

View Article and Find Full Text PDF

Emerging contaminants are a matter of growing concern for environmental and human health and safety, requiring efficient and affordable sensing platforms. Laser-induced graphene (LIG) is a novel material with a 3D porous graphene structure that can be fabricated in a simple one-step fabrication process. However, most LIG-based works in electrochemical sensors are limited to polyimide (PI)-based platforms, thus limiting the purview of properties of LIG dependent on the substrate-laser interaction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!