A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Biological effectiveness of accelerated particles for the induction of chromosome damage: track structure effects. | LitMetric

We have investigated how radiation quality affects the induction of chromosomal aberrations in human cells. Human lymphocytes were irradiated in vitro with various energies of accelerated high charge and energy (HZE) particles including oxygen, neon, silicon, titanium and iron. Chromosome damage was assessed using three-color FISH chromosome painting in chemically induced premature chromosome condensation samples collected at first cell division after irradiation. The LET values for these particles ranged from 30 to 195 keV/μm, and their energies ranged from about 55 MeV/u to more than 1,000 MeV/u. The 89 and 142 MeV/u neon particles produced the most simple-type reciprocal exchanges per unit dose. For complex-type exchanges, 64 MeV/u neon and 450 MeV/u iron were equally effective and induced the greatest amount of complex damage. Track structure models predict that at a fixed value of LET, particles with lower charge number (Z) will have a higher biological effectiveness compared to particles with a higher Z, and that a saturation cross section will be observed for different radiation qualities. Our results are consistent with model expectations within the limitation of experimental error, and provide the most extensive data that have been reported on the radiation quality dependences of chromosomal aberrations.

Download full-text PDF

Source
http://dx.doi.org/10.1667/RR3291.1DOI Listing

Publication Analysis

Top Keywords

biological effectiveness
8
chromosome damage
8
damage track
8
track structure
8
radiation quality
8
chromosomal aberrations
8
mev/u neon
8
particles
6
mev/u
5
effectiveness accelerated
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!