Potato (Solanum tuberosum) is considered to be one of the most important crops cultivated in Europe and the entire world. The tubers of the potato are characterized by rich starch and protein contents and high concentrations of antioxidants, such as vitamin C and flavonoids. Notably, the presence of the phenolic antioxidants is of high importance as they have health-related properties. They are known to reduce the incidence of atherosclerosis, prevent certain kinds of cancer, and aid with many other kinds of diseases. The aim of this study was to find the most efficient way to increase the content of phenolic antioxidants in potato tubers through transgenesis. The results showed that the most efficacious way to achieve this goal was the overexpression of the dihydroflavonol reductase gene (DFR). The produced transgenic potato plants served as a nutrition source for laboratory rats; the study has confirmed their nontoxicity and nutritional benefits on the tested animals.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jf400645sDOI Listing

Publication Analysis

Top Keywords

transgenic potato
8
potato plants
8
overexpression dihydroflavonol
8
dihydroflavonol reductase
8
phenolic antioxidants
8
plants overexpression
4
reductase serve
4
serve efficient
4
efficient nutrition
4
nutrition sources
4

Similar Publications

Agrobacterium-mediated gene transformation method is a vital molecular biology technique employed to develop transgenic plants. Plants are genetically engineered to develop disease-free varieties, knock out unsettling traits for crop improvement, or incorporate an antigenic protein to make the plant a green factory for edible vaccines. The method's robustness was validated through successful transformations, demonstrating its effectiveness as a standard approach for researchers working in plant biotechnology.

View Article and Find Full Text PDF

Overexpression of StBBX14 Enhances Cold Tolerance in Potato.

Plants (Basel)

December 2024

Guizhou Institute of Biotechnology, Guizhou Provincial Academy of Agricultural Sciences, Guiyang 550003, China.

Potato ( L.) is an important food crop, but low temperature affects the potato growth and yield. In this study, the expression level of was significantly increased over 1 h and then gradually decreased under cold stress.

View Article and Find Full Text PDF

A novel geminivirus-derived 3' flanking sequence of terminator mediates the gene expression enhancement.

Plant Biotechnol J

December 2024

Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, China.

Exploring the new elements to re-design the expression cassette is crucial in synthetic biology. Viruses are one of the most important sources for exploring gene expression elements. In this study, we found that the DNA sequence of the SBG51 deltasatellite from the Sweet potato leaf curl virus (SPLCV) greatly enhanced the gene expression when flanked downstream of the terminator.

View Article and Find Full Text PDF

Amaranth is an ancient crop of the family Amaranthaceae, but it is fairly new to Russia. Its seeds and leaf biomass contain a high-quality gluten-free protein, fatty acids, squalene (a polyunsaturated hydrocarbon), flavonoids, vitamins, and minerals. A comprehensive study of amaranth, enhancement of its breeding, and development of new cultivars will contribute to food quality improvement through the use of plant raw materials enriched for wholesome and highly nutritious components.

View Article and Find Full Text PDF

Effects of two amino acid transporter-like genes on potato growth.

J Plant Physiol

December 2024

Huzhou Wuxing Jinnong Ecological Agriculture Development Co. LTD, Huzhou, Zhejiang, 313000, People's Republic of China. Electronic address:

Amino acid transporters are membrane proteins that mediate amino acid transport across the plasma membrane. They play a significant role in plant growth and development. The amino acid permease (AAP) subfamily belongs to the activating transcription factor family, which is one of the main amino acid transporter families.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!