Paraquat is a highly toxic herbicide capable of generating oxidative stress and producing brain damage after chronic exposure. The aim of this research was to investigate the contribution of mitochondria to the molecular mechanism of apoptosis in an in vivo experimental model of paraquat neurotoxicity. Sprague-Dawley adult female rats received paraquat (10 mg/kg i.p.) or saline once a week during a month. Paraquat treatment increased cortical and striatal superoxide anion levels by 45% and 18%, respectively. As a consequence, mitochondrial aconitase activity was significantly inhibited in cerebral cortex and striatum. Paraquat treatment increased cortical and striatal lipid peroxidation levels by 16% and 28%, respectively, as compared with control mitochondria Also, cortical and striatal cardiolipin levels were decreased by 13% and 49%, respectively. Increased Bax and Bak association to mitochondrial membranes was observed after paraquat treatment in cerebral cortex and striatum. Also, paraquat induced cytochrome c and AIF release from mitochondria. These findings support the conclusion that a weekly dose of paraquat during four weeks induces oxidative damage that activates mitochondrial pathways associated with molecular mechanisms of cell death. The release of apoptogenic proteins from mitochondria to cytosol after paraquat treatment would be the consequence of an alteration in mitochondrial membrane permeability due to the presence of high superoxide anion levels. Also, our results suggest that under chronic exposure, striatal mitochondria were more sensitive to paraquat oxidative damage than cortical mitochondria. Even in the presence of a high oxidative stress in striatum, equal levels of apoptosis were attained in both brain areas.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3109/10715762.2013.806797 | DOI Listing |
Mol Oncol
January 2025
Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Italy.
Specific reactive oxygen species activate the GTPase Kirsten rat sarcoma virus (KRAS) by reacting with cysteine 118 (C118), leading to an electron transfer between C118 and nucleoside guanosine diphosphate (GDP), which causes the release of GDP. Here, we have mimicked permanent oxidation of human KRAS at C118 by replacing C118 with aspartic acid (C118D) in KRAS to show that oncogenic mutant KRAS is selectively inhibited via oxidation at C118, both in vitro and in vivo. Moreover, the combined treatment of hydrogen-peroxide-producing pro-oxidant paraquat and nitric-oxide-producing inhibitor N(ω)-nitro-l-arginine methyl ester selectively inhibits human mutant KRAS activity by inducing oxidization at C118.
View Article and Find Full Text PDFFront Plant Sci
January 2025
Department of Soil Science, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran.
Potato () production requires effective nutrient and weed management strategies to enhance tuber yield and quality while minimizing the environmental impact of chemical inputs. This study investigated the effects of various weed and nutrient management practices on potato tuber yield, yield components, and quality traits. The experiments were conducted over two years (2019-2020) at the University of Kurdistan's research farm in the Dehgolan Plain, using a split-plot based on randomized complete block design with four replicates.
View Article and Find Full Text PDFLab Anim Res
January 2025
Anatomy Department, Faculty of Basic Medical Sciences, Alex Ekwueme, Federal University, Ndufu-Alike, Ebonyi State, Nigeria.
Background: The Microtubules-associated protein tau (MAPT), alpha-synuclein (SNCA), and leucine zipper tumor suppressor 3 (LZTS3) genes are implicated in neurodegeneration and tumor suppression, respectively. This study investigated the regulatory roles of eugenol on paraquat-altered genes.
Results: Forty male Wistar rats divided into five groups of eight rats were used.
BMC Pulm Med
January 2025
Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, 7618868367, Iran.
Background: Paraquat (PQ) is a widely used pesticide, can cause severe intoxication and respiratory failure. Myrtenol (Mrl), an essential oil derived in various plants, exhibits several biological properties, including anti-inflammatory and antioxidant activities. This study aims to investigate the protective potential of Mrl against oxidative stress and inflammation caused by PQ exposure.
View Article and Find Full Text PDFJ Paediatr Child Health
January 2025
Queensland Children's Hospital, Brisbane, Queensland, Australia.
Aim: To report on the management of a toddler who had accidental ingestion of an unknown amount of paraquat, with treatment including continuous renal replacement therapy (CRRT), steroids and antifibrinolytics at a tertiary-level health system.
Methods: A 16-month-old child weighing 10 kg accidentally ingested an unknown amount of Gramoxone containing paraquat. The child was transferred to a tertiary centre Paediatric Intensive Care Unit (PICU) where she was electively intubated and commenced on CRRT at 7 hours and 15 minutes post-ingestion.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!