An array of nanoscale-recessed ring-disk electrodes was fabricated using layer-by-layer deposition, nanosphere lithography, and a multistep reactive ion etching process. The resulting device was operated in generator-collector mode by holding the ring electrodes at a constant potential and performing cyclic voltammetry by sweeping the disk potential in Fe(CN)6(3-/4-) solutions. Steady-state response and enhanced (~10×) limiting current were achieved by cycling the redox couple between ring and disk electrodes with high transfer/collection efficiency. The collector (ring) electrode, which is held at a constant potential, exhibits a much smaller charging current than the generator (disk), and it is relatively insensitive to scan rate. A characteristic feature of the nanoscale ring-disk geometry is that the electrochemical reaction occurring at the disk electrodes can be tuned by modulating the potential at the ring electrodes. Measured shifts in Fe(CN)6(3-/4-) concentration profiles were found to be in excellent agreement with finite element method simulations. The main performance metric, the amplification factor, was optimized for arrays containing small diameter pores (r < 250 nm) with minimum electrode spacing and high pore density. Finally, integration of the fabricated array within a nanochannel produced up to 50-fold current amplification as well as enhanced selectivity, demonstrating the compatibility of the device with lab-on-a-chip architectures.

Download full-text PDF

Source
http://dx.doi.org/10.1021/nn401542xDOI Listing

Publication Analysis

Top Keywords

nanoscale-recessed ring-disk
8
ring electrodes
8
constant potential
8
disk electrodes
8
electrodes
5
redox cycling
4
cycling nanoscale-recessed
4
ring-disk electrode
4
electrode arrays
4
arrays enhanced
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!