Cross-brain neurofeedback: scientific concept and experimental platform.

PLoS One

State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, PR China.

Published: December 2013

The present study described a new type of multi-person neurofeedback with the neural synchronization between two participants as the direct regulating target, termed as "cross-brain neurofeedback." As a first step to implement this concept, an experimental platform was built on the basis of functional near-infrared spectroscopy, and was validated with a two-person neurofeedback experiment. This novel concept as well as the experimental platform established a framework for investigation of the relationship between multiple participants' cross-brain neural synchronization and their social behaviors, which could provide new insight into the neural substrate of human social interactions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3656856PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0064590PLOS

Publication Analysis

Top Keywords

experimental platform
12
concept experimental
8
neural synchronization
8
cross-brain neurofeedback
4
neurofeedback scientific
4
scientific concept
4
platform study
4
study described
4
described type
4
type multi-person
4

Similar Publications

High-Q Emission from Colloidal Quantum Dots Embedded in Polymer Quasi-BIC Metasurfaces.

Nano Lett

January 2025

Department of Electrical and Computer Engineering, Northwestern University, Evanston, Illinois 60208, United States.

Metasurfaces supporting narrowband resonances are of significant interest in photonics for molecular sensing, quantum light source engineering, and nonlinear photonics. However, many device architectures rely on large refractive index dielectric materials and lengthy fabrication processes. In this work, we demonstrate quasi-bound states in the continuum (quasi-BICs) using a polymer metasurface exhibiting experimental quality factors of 305 at visible wavelengths.

View Article and Find Full Text PDF

Continuous Production of Influenza VLPs Using IC-BEVS and Multi-Stage Bioreactors.

Biotechnol Bioeng

January 2025

Instituto de Biologia Experimental e Tecnológica (iBET), Oeiras, Portugal.

The insect cell-baculovirus expression vector system (IC-BEVS) has been an asset to produce biologics for over 30 years. With the current trend in biotechnology shifting toward process intensification and integration, developing intensified processes such as continuous production is crucial to hold this platform as a suitable alternative to others. However, the implementation of continuous production has been hindered by the lytic nature of this expression system and the process-detrimental virus passage effect.

View Article and Find Full Text PDF

Knowledge-aware recommendation systems often face challenges owing to sparse supervision signals and redundant entity relations, which can diminish the advantages of utilizing knowledge graphs for enhancing recommendation performance. To tackle these challenges, we propose a novel recommendation model named Dual-Intent-View Contrastive Learning network (DIVCL), inspired by recent advancements in contrastive and intent learning. DIVCL employs a dual-view representation learning approach using Graph Neural Networks (GNNs), consisting of two distinct views: a local view based on the user-item interaction graph and a global view based on the user-item-entity knowledge graph.

View Article and Find Full Text PDF

The current gold standard for the study of human movement is the marker-based motion capture system that offers high precision but constrained by costs and controlled environments. Markerless pose estimation systems emerge as ecological alternatives, allowing unobtrusive data acquisition in natural settings. This study compares the performance of two popular markerless systems, OpenPose (OP) and DeepLabCut (DLC), in assessing locomotion.

View Article and Find Full Text PDF

The MISSE-Seed project was designed to investigate the effects of space exposure on seed quality and storage. The project tested the Multipurpose Materials International Space Station Experiment-Flight Facility (MISSE-FF) hardware as a platform for exposing biological samples to the space environment outside the International Space Station (ISS). Furthermore, it evaluated the capability of a newly designed passive sample containment canister as a suitable exposure unit for biological samples for preserving their vigor while exposing to the space environment to study multi-stressor effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!