Analogues of 1-methyl-4-phenylpyridinium (MPP+), the neurotoxic metabolite of the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, were evaluated for inhibition of respiration in intact mitochondria (Mw) and in electron transport particles (ETP). MPP+ exhibits relatively weak inhibitory activity in ETP, but potent inhibition in Mw occurs on account of its energy-dependent accumulation inside mitochondria. The permeant anion tetraphenylborate potentiates the inhibition in both Mw and ETP. Replacement of the 4-phenyl ring of MPP+ by a variety of aromatic and nonaromatic rings, and of the N-methylpyridinium group by other cationic aromatic heterocycles, preserves the inhibitory patterns seen for MPP+. The general observation of enhanced inhibitory potency in Mw for all these permanently charged cations is consistent with our contention that energy-dependent accumulation inside mitochondria represents a passive Nernstian concentration in response to the transmembrane electrochemical gradient. Nonetheless, the magnitude of the inhibitory potentiation seen in Mw relative to ETP varies widely with structure. In particular, less lipophilic analogues, especially those bearing a localized, rather than resonance-stabilized, permanent positive charge, exhibit similar inhibitory activity to MPP+ in ETP, but the inhibition in Mw is not comparably enhanced. For these same analogues, the inhibitory activity in ETP is only weakly potentiated by tetraphenylborate. Since succinate was found to completely reverse the respiratory inhibition in Mw induced by all types of MPP+ analogues investigated, a common site 1 inhibition appears to be involved; thus the different inhibitory patterns observed must be due to structural factors governing membrane transport and distribution properties.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0003-9861(90)90330-2DOI Listing

Publication Analysis

Top Keywords

inhibitory activity
12
dopaminergic neurotoxin
8
inhibitory
8
enhanced inhibitory
8
inhibitory potency
8
intact mitochondria
8
activity etp
8
energy-dependent accumulation
8
accumulation inside
8
inside mitochondria
8

Similar Publications

Control of striatal circuit development by the chromatin regulator .

Sci Adv

January 2025

Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.

The pathophysiology of neurodevelopmental disorders involves vulnerable neural populations, including striatal circuitry, and convergent molecular nodes, including chromatin regulation and synapse function. Despite this, how epigenetic regulation regulates striatal development is understudied. Recurrent de novo mutations in are associated with intellectual disability and autism.

View Article and Find Full Text PDF

Task-free brain activity affords unique insight into the functional structure of brain network dynamics and has been used to identify neural markers of individual differences. In this work, we present an algorithmic optimization framework that directly inverts and parameterizes brain-wide dynamical-systems models involving hundreds of interacting neural populations, from single-subject M/EEG time-series recordings. This technique provides a powerful neurocomputational tool for interrogating mechanisms underlying individual brain dynamics ("precision brain models") and making quantitative predictions.

View Article and Find Full Text PDF

Chemical Constituents of the Deep-Sea-Derived Penicillium citrinum W22 and Their Ferroptosis Inhibitory Activity.

Chem Biodivers

January 2025

Hainan Pharmaceutical Research and Development Science Park, Hainan Academy of Medical Sciences, Hainan Medical University, Haikou, China.

One new monomeric citrinin analog (1) and 42 known compounds (2-43) were isolated from Penicillium citrinum W22. The structure of 1 was determined by detailed analysis of the 1D and 2D nuclear magnetic resonance (NMR), HRESIMS, and time-dependent density functional theory (TD-DFT)-based electronic circular dichroism (ECD) calculation. Penicitrinol A (2) and methyl 2-(2-acetyl-3,5-dihydroxy-4,6-dimethylphenyl) acetate (11) significantly inhibited renin-angiotensin system-selective lethal 3 (RSL3)-induced ferroptosis with half maximal effective concentration (EC) values of 1.

View Article and Find Full Text PDF

Metabolically Stable Adenylation Inhibitors of Biotin Protein Ligase as Antibacterial Agents.

J Med Chem

January 2025

Department of Medicinal Chemistry, University of Minnesota, 308 Harvard Street SE, Minneapolis, Minnesota 55455, United States.

The antibacterial agent Bio-AMS is metabolized in vivo through hydrolysis of the central acyl-sulfamide linker leading to high clearance and release of a moderately cytotoxic metabolite . Herein, we disclose analogues designed to prevent the metabolism of the central acyl-sulfamide moiety through steric hindrance or attenuation of the acyl-sulfamide electrophilicity. was identified as a metabolically stable analogue with a single-digit nanomolar dissociation constant for biotin protein ligase (BPL) and minimum inhibitory concentrations (MICs) against and ranging from 0.

View Article and Find Full Text PDF

Some novel sulphonyl thiourea derivatives (7a-m) containing 4,6-diarylpyrimidine rings were designed and synthesized using a one-pot procedure. These compounds exhibited remarkable dual inhibitory activity against human carbonic anhydrase CA I, CA II, CA IX, and XII isoenzymes and some cancer cell lines. Among them, some thioureas had significantly more potent inhibitory activities in the order of 7l > 7c > 7f (against the CA I isoform), 7f > 7b > 7c (against the CA II isoform), 7c > 7g > 7a > 7b (against the CA IX isoform), and 7d > 7c > 7g > 7f (against the CA XII isoform).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!