A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Cholecystokinin: an excitatory modulator of mitral/tufted cells in the mouse olfactory bulb. | LitMetric

Cholecystokinin (CCK) is widely distributed in the brain as a sulfated octapeptide (CCK-8S). In the olfactory bulb, CCK-8S is concentrated in two laminae: an infraglomerular band in the external plexiform layer, and an inframitral band in the internal plexiform layer (IPL), corresponding to somata and terminals of superficial tufted cells with intrabulbar projections linking duplicate glomerular maps of olfactory receptors. The physiological role of CCK in this circuit is unknown. We made patch clamp recordings of CCK effects on mitral cell spike activity in mouse olfactory bulb slices, and applied immunohistochemistry to localize CCKB receptors. In cell-attached recordings, mitral cells responded to 300 nM-1 µM CCK-8S by spike excitation, suppression, or mixed excitation-suppression. Antagonists of GABAA and ionotropic glutamate receptors blocked suppression, but excitation persisted. Whole-cell recordings revealed that excitation was mediated by a slow inward current, and suppression by spike inactivation or inhibitory synaptic input. Similar responses were elicited by the CCKB receptor-selective agonist CCK-4 (1 µM). Excitation was less frequent but still occurred when CCKB receptors were blocked by LY225910, or disrupted in CCKB knockout mice, and was also observed in CCKA knockouts. CCKB receptor immunoreactivity was detected on mitral and superficial tufted cells, colocalized with Tbx21, and was absent from granule cells and the IPL. Our data indicate that CCK excites mitral cells postsynaptically, via both CCKA and CCKB receptors. We hypothesize that extrasynaptic CCK released from tufted cell terminals in the IPL may diffuse to and directly excite mitral cell bodies, creating a positive feedback loop that can amplify output from pairs of glomeruli receiving sensory inputs encoded by the same olfactory receptor. Dynamic plasticity of intrabulbar projections suggests that this could be an experience-dependent amplification mechanism for tuning and optimizing olfactory bulb signal processing in different odor environments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3655022PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0064170PLOS

Publication Analysis

Top Keywords

olfactory bulb
16
cckb receptors
12
mouse olfactory
8
plexiform layer
8
superficial tufted
8
tufted cells
8
intrabulbar projections
8
mitral cell
8
mitral cells
8
receptors blocked
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!