The left ventricle (LV) pumps oxygenated blood from the lungs to the rest of the body through systemic circulation. The efficiency of such a pumping function is dependent on blood flow within the LV chamber. It is therefore crucial to accurately characterize LV hemodynamics. Improved understanding of LV hemodynamics is expected to provide important clinical diagnostic and prognostic information. We review the recent advances in numerical and experimental methods for characterizing LV flows and focus on analysis of intraventricular flow fields by echocardiographic particle image velocimetry (echo-PIV), due to its potential for broad and practical utility. Future research directions to advance patient-specific LV simulations include development of methods capable of resolving heart valves, higher temporal resolution, automated generation of three-dimensional (3D) geometry, and incorporating actual flow measurements into the numerical solution of the 3D cardiovascular fluid dynamics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3652115 | PMC |
http://dx.doi.org/10.1155/2013/395081 | DOI Listing |
Immunol Med
January 2025
Department of Diabetes, Endocrinology and Clinical Immunology, Hyogo Medical University School of Medicine, Hyogo, Japan.
Rituximab (RTX) has been reported to effectively maintain remission in anti-neutrophil cytoplasmic antibody-associated vasculitis (AAV). In this multicenter study involving 57 patients who achieved remission after 24 weeks, we evaluated the effectiveness of RTX in maintaining remission in patients with AAV. Patients were divided into three groups based on RTX administration: continuous, induction phase-only, and maintenance phase-only groups.
View Article and Find Full Text PDFBMJ Open Gastroenterol
December 2024
Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.
Objective: Preventing return to alcohol is of critical importance for patients with alcohol-related cirrhosis and/or alcohol-associated hepatitis. Acamprosate is a widely used treatment for alcohol use disorder (AUD). We assessed the impact of acamprosate prescription in patients with advanced liver disease on abstinence rates and clinical outcomes.
View Article and Find Full Text PDFJ Microsc
January 2025
Department of Mechanical, Materials and Aerospace Engineering, University of Liverpool, Liverpool, UK.
Electron backscatter diffraction (EBSD) has developed over the last few decades into a valuable crystallographic characterisation method for a wide range of sample types. Despite these advances, issues such as the complexity of sample preparation, relatively slow acquisition, and damage in beam-sensitive samples, still limit the quantity and quality of interpretable data that can be obtained. To mitigate these issues, here we propose a method based on the subsampling of probe positions and subsequent reconstruction of an incomplete data set.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Xi'an Aerospace Chemical Propulsion Co., Ltd., Xi'an 710089, China.
In this paper, we propose an optimal parking path planning method based on numerical solving, which leverages the concept of the distance between convex sets. The obstacle avoidance constraints were transformed into continuous, smooth nonlinear constraints using the Lagrange dual function. This approach enables the determination of a globally optimal parking path while satisfying vehicular kinematic constraints.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Guangxi Key Laboratory of Machine Vision and Intelligent Control, Wuzhou University, Wuzhou 543000, China.
A high-quality optical path alignment is essential for achieving superior image quality in optical biological microscope (OBM) systems. The traditional automatic alignment methods for OBMs rely heavily on complex masker-detection techniques. This paper introduces an innovative, image-sensor-based optical path alignment approach designed for low-power objective (specifically 4×) automatic OBMs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!