Temporal and spatial distribution of Nrf2 in rat brain following stroke: quantification of nuclear to cytoplasmic Nrf2 content using a novel immunohistochemical technique.

J Physiol

Cardiovascular Division, BHF Centre of Research Excellence, School of Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK.

Published: July 2013

Activation of the redox-sensitive transcription factor NF-E2 related factor 2 (Nrf2) affords protection against cerebral ischaemia-reperfusion injury via the upregulation of antioxidant defence genes. We have quantified for the first time Nrf2 content in brains from rats subjected to stroke and from cultured bEnd.3 brain endothelial cells using a novel immunohistochemical technique. Male Sprague-Dawley rats were subjected to middle cerebral artery occlusion for 70 min followed by reperfusion for 4, 24 or 72 h. Coronal brain sections were incubated with anti-Nrf2 primary and biotinylated-horseradish peroxidase-conjugated secondary antibody, after which sections were reacted with 3,3-diaminobenzidine (DAB) in the presence of hydrogen peroxide. The initial rates of DAB polymer formation were directly proportional to the Nrf2 protein concentration. Image processing was used to determine the temporal and spatial distribution of Nrf2 in nuclear and cytoplasmic compartments in stroke-affected and contralateral hemispheres. Nuclear to cytoplasmic Nrf2 ratios were increased in the stroke region after 24 h reperfusion and declined after 72 h reperfusion. Pretreatment with the Nrf2 inducer sulforaphane reduced total cellular Nrf2 levels in peri-infarct and core regions of the stroke hemisphere after 24 h reperfusion. Treatment of cultured murine brain endothelial cells with sulforaphane (2.5 μm) increased nuclear accumulation of Nrf2 over 1-4 h. We report the first quantitative measurements of spatial and temporal nuclear Nrf2 expression in rat brains following stroke, and show that sulforaphane pretreatment affects Nrf2 distribution in the brain of naïve rats and animals subjected to cerebral ischaemia. Our findings provide novel insights for targeting endogenous redox-sensitive antioxidant pathways to ameliorate the damaging consequences of stroke.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3731611PMC
http://dx.doi.org/10.1113/jphysiol.2013.257964DOI Listing

Publication Analysis

Top Keywords

nrf2
12
nuclear cytoplasmic
12
temporal spatial
8
spatial distribution
8
distribution nrf2
8
cytoplasmic nrf2
8
nrf2 content
8
novel immunohistochemical
8
immunohistochemical technique
8
rats subjected
8

Similar Publications

Introduction: The mechanism of remimazolam, a benzodiazepine that activates γ-aminobutyric acid a (GABAa) receptors, in cerebral ischemia/reperfusion (I/R) injury is not well understood. Therefore, we explored whether remimazolam activates protein kinase B (AKT)/glycogen synthase kinase-3β (GSK-3β)/nuclear factor erythroid 2-related factor 2 (NRF2) to attenuate brain I/R injury in transcerebral I/R-injured rats and transoxygenic glucose deprivation/reperfusion (OGD/R)-injured SY5Y cells.

Material And Methods: Remimazolam was added at the beginning of cell and rat reperfusion, and the PI3K/AKT inhibitor LY294002 was added to inhibit the AKT/GSK-3β/NRF2 pathway 24 h before cellular OGD/R treatment and 30 min before rat brain I/R treatment.

View Article and Find Full Text PDF

Reductive stress, characterized by rising level of NADH (nicotinamide adenine dinucleotide) for a status of NADH/NAD ratio elevation, has been reported in obesity and cancer. However, the mechanism and significance of reductive stress remain to be established in obesity. This perspective is prepared to address the issue with new insights published recently.

View Article and Find Full Text PDF

5-(3-(-(Carboxymethyl)naphthalene-2-sulfonamido)phenyl)-1-ethyl-1-pyrrole-2-carboxylic acid as a Keap1-Nrf2 inhibitor for cerebral ischemia/reperfusion injury treatment.

RSC Adv

January 2025

Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area (Ningxia Medical University), Ministry of Education, School of Pharmacy, Ningxia Medical University 1160 Shengli Street Yinchuan 750004 China

The Keap1 (Kelch-like ECH-Associating Protein 1)-Nrf2 (Nuclear Factor Erythroid 2-Related Factor 2)-ARE (Antioxidant Response Element) signaling pathway plays a crucial role in the oxidative stress response and has been linked to the development and progression of various diseases. Its influence on cerebral ischemia/reperfusion (I/R) injury has garnered significant attention. In our study, we investigated the effect of compound 2, a non-covalent inhibitor of the Keap1-Nrf2 interaction, which was previously discovered by our research group.

View Article and Find Full Text PDF

Atherosclerosis (AS) is a chronic inflammatory vascular disease and the primary pathological basis of cardiovascular diseases. Epigallocatechin-3-gallate (EGCG), the most abundant polyphenol compound in green tea, has garnered significant attention in recent years for its protective effects against AS. EGCG possesses properties that lower lipid levels, exhibit antioxidant and anti-inflammatory activities, enhance plaque stability, and promote the recovery of endothelial function.

View Article and Find Full Text PDF

Endothelial Gsα deficiency promotes ferroptosis and exacerbates atherosclerosis in apolipoprotein E-deficient mice via the inhibition of NRF2 signaling.

Acta Pharmacol Sin

January 2025

State Key Laboratory for Innovation and Transformation of Luobing Theory; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, 250012, China.

The importance of ferroptosis in the occurrence and progression of atherosclerosis is gradually being recognized. The stimulatory G protein α subunit (Gsα) plays a crucial role in the physiology of endothelial cells (ECs). Our previous study showed that endothelial Gsα could regulate angiogenesis and preserve endothelial permeability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!