Granule Bound Starch Synthase I (GBSS I) encoded by the waxy gene plays an important role in accumulating amylose during the development of starch granules in barley. In this study, we isolated and characterized waxy alleles of three waxy (GSHO 908, GSHO 1828 and NA 40) and two non-waxy barley accessions (PI 483237 and CIho 15773), estimated the expression patterns of waxy genes via Real-time quantitative PCR (RT-qPCR), investigated promoter activity by analyzing promoter-GUS expression, and examined possible effects of waxy alleles on starch granule morphology in barley accessions by scanning electron microscopy (SEM). A 193-bp insertion in intron 1, a 15-bp insertion in the coding region, and some single nucleotide polymorphic sites were detected in the waxy barley accessions. In addition, a 397-bp deletion containing the TATA box, transcription starting point, exon 1 and partial intron 1 were also identified in the waxy barley accessions. RT-qPCR analysis showed that waxy accessions had lower waxy expression levels than those of non-waxy accessions. Transient expression assays showed that GUS activity driven by the 1,029-bp promoter of the non-waxy accessions was stronger than that driven by the 822-bp promoter of the waxy accessions. SEM revealed no apparent differences of starch granule morphology between waxy and non-waxy accessions. Our results showed that the 397-bp deletion identified in the waxy barley accessions is likely responsible for the reduction of waxy transcript, leading to lower concentrations of GBSS I protein thus lower amylose content.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10709-013-9721-x | DOI Listing |
Plant Dis
December 2024
ICAR - Indian Institute of Wheat and Barley Research, Karnal, Haryana, India;
Guar or cluster bean (Cyamopsis tetragonoloba L.) is a leguminous crop well-suited for cultivation in arid and semi-arid regions. India accounts for 90% of world's guar production.
View Article and Find Full Text PDFVavilovskii Zhurnal Genet Selektsii
November 2024
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.
Synthetic intergeneric amphydiploids and genome-substituted wheat forms are an important source for transferring agronomically valuable genes from wild species into the common wheat (Triticum aestivum L.) genome. They can be used both in academic research and for breeding purposes as an original material for developing wheat-alien addition and substitution lines followed by translocation induction with the aid of irradiation or nonhomologous chromosome pairing.
View Article and Find Full Text PDFPlant Dis
November 2024
USDA-ARS, Wheat Health, Genetics and Quality Research Unit, Washington State University, Pullman, Washington, United States, 99164;
Plants (Basel)
October 2024
Department of Medical-Surgical and Complementary Sciences, College of Medicine and Biological Sciences, Stefan cel Mare University of Suceava, University 13, 720229 Suceava, Romania.
Nowadays, there is a general concern regarding the increasing global talk about functional foods that respond to our demands and needs as consumers in order to maintain health and body weight through a correctly balanced diet. Cereals are key elements of nutrition and a healthy diet, and they also play a significant role in health promotion due to the useful nutrient content. Therefore, this work aims to identify barley and oat genotypes suitable for human nutrition and to achieve practical results for their widespread use in preventing or treating certain chronic diseases by analyzing the nutritional and physical properties of 52 genotypes of oat and barley conserved in Suceava Gene Bank, Romania.
View Article and Find Full Text PDFPhysiol Plant
October 2024
Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Ibaraki, Japan.
Various members of the viral genera Furovirus and Bymovirus are damaging pathogens of a range of crop species. Infection of the soil-borne plasmodiophorid Polymyxa graminis transmits both Japanese soil-borne wheat mosaic virus (JSBWMV) and the barley yellow mosaic virus (BaYMV) to barley, but their interaction during an episode of their co-infection has not been characterized to date. Here, we present an analysis of the titer of JSBWMV and BaYMV in plants of winter barley growing over a five-month period from late fall until mid-spring.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!